[1] A.R. Adem, Symbolic computation on exact solutions of a coupled Kadomtsev–Petviashvili equation: Lie symmetry
analysis and extended tanh method, Comput. Math. Appl. 74 (2017) 1897–1902.
[2] A.R Adem, On the solutions and conservation laws of a two-dimensional Korteweg de Vries model: Multiple
exp-function method, J. Appl. Anal. 24 (2018) 27–33.
[3] S.J. Chen, W.X. Ma and X. L¨u, Backlund transformation, exact solutions and interaction behaviour of the (3+1)- ¨
dimensional Hirota-Satsuma-Ito-like equation, Commun. Nonlinear Sci. Numerical Simul. 83 (2020) 105135.
[4] Z. Du, B. Tian, H.P. Chai, Y. Sun and X.H. Zhao, Rogue waves for the coupled variable-coefficient fourth-order
nonlinear Schrodinger equations in an inhomogeneous optical fiber ¨ , Chaos, Solitons Fract. 109 (2018) 90-–98.
[5] X.X. Du, B. Tian, X.Y. Wu, H.M. Yin and C.R. Zhang, Lie group analysis, analytic solutions and conservation
laws of the (3 + 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electronpositron-ion plasma, The European Phys. J. Plus 133 (2018) 378.
[6] X. Guan, W. Liu, Q. Zhou and A. Biswas, Some lump solutions for a generalized (3+1)-dimensional KadomtsevPetviashvili equation, Appl. Math. Comput. 366 (2020) 124757.
[7] X. Guan, W. Liu, Q. Zhou and A. Biswas, Darboux transformation and analytic solutions for a generalized
super-NLS-mKdV equation, Nonlinear Dyn. 98 (2019) 1491–1500.
[8] T.M Garrido, R.D.L Rosa, E. Recio and M.S Bruzon, Symmetries, solutions and conservation laws for the (2+1)
filtration-absorption model, J. Math. Chem. 57 (2019) 1301–1313.
[9] X.Y. Gao, Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves
in the cosmic/laboratory dusty plasmas, Appl. Math. Lett. 91 (2019) 165-–172.
[10] Y.F. Hua, B.L. Guo, W.X. Ma and X. L¨u, Interaction behavior associated with a generalized (2 + 1)-dimensional
Hirota bilinear equation for nonlinear waves, Appl. Math. Model. 74 (2019) 184–198.
[11] X. Liu, W. Liu, H. Triki, Q. Zhou and A. Biswas, Periodic attenuating oscillation between soliton interactions
for higher-order variable coefficient nonlinear Schrodinger equation ¨ , Nonlinear Dyn. 96 (2019) 801–809.
[12] L. Liu, B. Tian, Y.Q. Yuan and Z. Du, Dark-bright solitons and semirational rogue waves for the coupled SasaSatsuma equations, Phys. Rev. E 97 (2018) 052217.
[13] L. Liu, B. Tiana, Y.Q. Yuan and Y. Sun, Bright and dark N-soliton solutions for the (2 + 1)-dimensional Maccari
system, European Phys. J. Plus 133 (2018) 72.
[14] W. Liu, Y. Zhang, A.M. Wazwaz and Q. Zhou, Analytic study on triple-S, triple-triangle structure interactions
for solitons in inhomogeneous multi-mode fiber, Appl. Math. Comput. 361 (2019) 325–331.
[15] S. Liu, Q. Zhou, A. Biswas and W. Liu, Phase-shift controlling of three solitons in dispersion-decreasing fibers,
Nonlinear Dyn. 98 (2019) 395–401.
[16] B. Muatjetjeja, Coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry: Symmetries and conservation laws, J. Diff. Equ. 263 (2017) 8322–8328.
[17] B. Muatjetjeja, On the symmetry analysis and conservation laws of the (1+ 1)-dimensional Henon-Lane-Emden
system, Math. Meth. Appl. Sci. 40 (2017) 1531–1537.
[18] E. Recio, T.M Garrido, R.D.L Rosa and M.S Bruzon, Conservation laws and Lie symmetries a (2+1)-dimensional
thin film equation, J. Math. Chem. 57 (2019) 1243–1251.
[19] S. Saez, R.D.L Rosa, E. Recio, T.M Garrido and M.S Bruzon, Lie symmetries and conservation laws for a
generalized (2+1)-dimensional nonlinear evolution equation, J. Math. Chem. 58 (2020) 775–798.
[20] A.M. Wazwaz, Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models
generated by the Jaulent-Miodek hierarchy, Phys. Lett. A 373 (2009) 1844–1846.
[21] A.M. Wazwaz, Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order
modified KdV equations, Appl. Math. Lett. 88 (2019) 1–7.
[22] A.M. Wazwaz, Multiple complex soliton solutions for the integrable KdV, fifth-order Lax, modified KdV, Burgers,
and Sharma-Tasso-Olver equations, Chinese J. Phys. 59 (2019) 372–378.
[23] A.M. Wazwaz and M.S. Osman, The combined multi-waves polynomial solutions in a two-layer-liquid medium,
Comput. Math. Appl. 76 (2018) 276–283.
[24] A.M. Wazwaz and, M.S. Osman, An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-
dimensional KdV equation with variable coefficients, Appl. Math. Comput. 321 (2018) 282–289.
[25] X.Y.Wu, B.Tian, L. Liu and Y. Sun, Rogue waves for a variable-coefficient Kadomtsev–Petviashvili equation in
fluid mechanics, Comput. Math. Appl. 76 (2018) 215–223.
[26] H.N. Xu, W.Y. Ruan, Y. Zhang and X. L¨u, Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior, Appl. Math. Lett. 99 (2020) 105976.
[27] Y.Q. Yuan, B. Tian, L. Liu, X.Y. Wu and Y. Sun, Solitons for the (2 +1)-dimensional Konopelchenko-Dubrovsky
equations, J. Math. Anal. Appl. 460 (2018) 476–486.A generalized (1+2)-dimensional Jaulent-Miodek equation 1735
[28] C.R. Zhang, B. Tian, X.Y. Wu, Y.Q. Yuan and X.X. Du, Rogue waves and solitons of the coherentlycoupled
nonlinear Schrodinger equations with the positive coherent coupling ¨ , Phys. Scripta 93 (2018) 095202.
[29] X.H. Zhao, B. Tian, X.Y. Xie, X.Y. Wu, Y. Sun and Y.J. Guo, Solitons, Backlund transformation and Lax pair for ¨
a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth, Waves in Random and Complex
Media 28 (2018) 356–366.