[1] Y. Alber and S. Guerre-Delabriere, On the projection methods for fixed point problems, Anal. 21(1) (2001) 17–39.
[2] Y. Alber and S. Reich, An iterative method for solving a class of nonlinear operator in banach spaces, Panamer. Math. J. 4 (1994) 39–54.
[3] Y. Alber and I. Ryazantseva, Nonlinear Ill Posed Problems of Monotone Type, Springer, London, 2006.
[4] Y. I. Alber, Metric and generalized projections in banach spaces: properties and applications, in: Kartsatos, a.g. (ed.) theory and applications of nonlinear operators of accretive and monotone type, (1996) 15–50.
[5] S. M. Alsulami and W. Takahashi, The split common null point problem for maximal monotone mappings in hilbert spaces and applications, J. Nonlinear Convex Anal. 15 (2014) 793–808.
[6] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. Theory, Meth. Appl. 67(8) (2007) 2350– 2360.
[7] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63(1–4) (1994) 123–145.
[8] F. E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann. 175 (1968) 89–113.
[9] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967) 197–228.[10] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inv. Probl. 18 (2002) 441–453.
[11] C. Byrne, Y. Censor, A. Gibali and S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal. 13 (2012) 759–775.
[12] A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, Springer, Heidelberg, 2012.
[13] Y. Censor and T. Elfving, A multiprojection aalgorithm using Bregman projections in a product space, Numer. Algor. 8 (1994) 221–239.
[14] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numerical Algor. 59 (2012) 301–323.
[15] Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal. 25(5) (2010) 055007.
[16] C.E. Chidume, Remarks on a recent paper titled: On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in banach spaces, J. Inequal. Appl. 47 (2021).
[17] C.E. Chidume, An approximation method for monotone lipschitzian operators in hilbert-spaces, J. Aust. Math. Soc. 41 (1986) 59–63.
[18] C.E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations Lecture Notes in Mathematics, 1965, London, Springer-Verlag, (2009)
[19] C.E. Chidume, C.O. Chidume and A.U. Bello, An algorithm for computing zeros of generalized phistrongly monotone and bounded maps in classical banach spaces. Optim. 65(4) (2016) 827–839.
[20] C.E. Chidume and C.E. Idu, Approximation of zeros of bounded maximal monotone maps, solutions of Hammerstein integral equations and convex minimization problems, Fixed Point Theory Appl. 97 (2016)
[21] C.E. Chidume, E.E. Otubo and C.G. Ezea, Strong convergence theorem for a common fixed point of an infinite family of j−nonexpansive maps with applications, Aust. J. Math. Anal. Appl. 13(1) (2016) 1–13.
[22] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Netherlands, Kluwer Academic Publishers, (1990).
[23] F. Cianciaruso, G. Marino and L. Muglia, Iterative methods for equilibrium and fixed point problems for nonexpansive semigroups in Hilbert spaces, J. Optim. Theory Appl. 146(2) (2010) 491–509.
[24] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6(1) (2005) 117–136.
[25] P.L. Combettes and J.C. Pesquet, Proximal splitting methods in signal processing, Fixed-Point Algor. Inv. Probl. Sci. Eng. 49 (2011) 185–212.
[26] E. Dozo, Multivalued nonexpansive mappings and Opial’s conditon, Proc. Amer. Math. Soc. 38(2) (1973) 286–292.
[27] J. Garcia-Falset, E. Lorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011) 185–195.
[28] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967) 957–961.
[29] M. Hojo and W. Takahashi, A Strong Convegence Theorem by Shrinking Projection method for the split common null point problem in Banach spaces, Numer. Funct. Anal. Optim. 37 (2016) 541–553.
[30] I.S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 149 (1974) 147–150.
[31] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in Banach space, Proc. Amer. Math. Soc. 59 (1976) 65–71.
[32] P. Jailoka and S. Suantai, Split common fixed point and null point problems for demicontractive operators in Hilbert spaces, Optim. Meth. Software 34(2) (2019) 248–263.
[33] S. Kamimura and W. Takahashi, Strong vonvergence of a proximal-type algorithm in a Banach space, SIAM. J. Optim. 13 (2002) 938–945.
[34] M.A. Krasnosel’skii, Two remarks on the method of successive approximations (in Rrussian), Uspekhi Mate. Nauk 10 (1995) 123–127.
[35] B. Liu, Fixed point of strong duality pseudocontractive mappings and applications, Abstr. Appl. Anal. 2012 (2012) Article ID 623625, 7 pages.
[36] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(3) (1953) 506–510.
[37] A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Global Optim., 47(2):45 – 52.
[38] Moudafi, A. (2010b). The Split Common Fixed-point Problem for Demicontractive Mappings. Inv. Probl. 26 (2010) 587–600.
[39] A. Moudafi and M. Thera, Finding a zero of the sum of two maximal monotone operators, J. Optim. TheoryAppl. 94(2) (1997) 425–448.
[40] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372–379.
[41] S. Ohsawa and W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. (Basel). 81 (2003) 439–445.
[42] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mMappings, Bull. Amer. Math. Soc. 73 (1967) 591–597.
[43] S. Reich, The range of sums of accretive and monotone operators, J. Math. Anal. Appl. 68(1) (1979) 310–317.
[44] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970) 209–216.
[45] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.
[46] F. Schopfer, T. Schuster and A.K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inv. Prob. 24(20) (2008) 055008.
[47] Y. Shehu and P. Cholamjiak, Another look at the split common fixed point problem for demicontractive operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 110 (2016) 201–218.
[48] Y. Shehu, O.S. Iyiola and C.D. Enyi, An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces, Inv. Prob. 72 (2016) 835–864.
[49] M.V. Solodov and B.F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming Ser. A 87 (2000) 189–202.
[50] W. Takahashi, Convex Analysis and Approximation of Fixed Points, (Japanese). Yokohama Publishers, Yokohama, 2000.
[51] W. Takahashi, Proximal point algorithms and four resolvents of nonlinear operators of monotone type in Banach spaces, Taiwanese J. of Math. 12(8) (2008) 1883–1910.
[52] W. Takahashi, The split common null point problem in Banach spaces, Arch. Math. 104 (2015) 357–365.
[53] W. Takahashi, The split common null point problem in two Banach spaces, J. Nonlinear Convex Anal. 16 (2015) 2343–2350.
[54] W. Takahashi, H.K. Xu and J.C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal. 23 (2015) 205–221.
[55] W. Takahashi, The split common null point problem for generalized resolvents in two Banach spaces, Numerical Algor. 75 (2017) 1065—1078.
[56] W. Takahashi and K. Zembayashi Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. Theory Meth. Appl. 70(1) (2009) 45–57.
[57] J. Tang, S. Chang, L. Wang and X. Wang, On the split common fixed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in banach spaces, J. Inequal. Appl. 305 (2015)
[58] Y. Tang, Y. (2019). New inertial algorithm for solving split common null point problem in banach spaces, J. Inequal. Appl. 17 (2019).
[59] F. Wang, A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces, Numerical Funct. Anal. Optim.,35 (2014) 99–110.
[60] R. Wangkeeree and N. Nimana, Viscosity approximations by the shrinking projection method of quasi-nonexpansive mappings for generalized equilibrium problems, J. Appl. Math. 2012 (2012) Article ID 235474, 30 pages.
[61] H.K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal. 16(2) (1991) 1127–1138.
[62] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(1) (2002) 240–256.
[63] H.K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem, Inv. Prob. 22 (2006) 2021–2034.
[64] H. Zegeye, Strong convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl. 343 (2008) 663–671.