[1] C.T. Aage and J.N. Salunke, Fixed points of (ψ −ϕ)−weak contractions in cone metric spaces, Ann. Funct. Anal. 2(1) (2003) 59—71.
[2] R.P. Agarwal, E. Karapınar and B. Samet, An essential remark on fixed point results on multiplicative metric spaces, Fixed Point Theory Appl. 21 (2016).
[3] Ya.I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory and its applications, Springer (1997) 7–22.
[4] A. Amini-Harandi and M. Fakhar, Fixed point theory in cone metric spaces obtained via the scalarization method, Comput. Math. Appl. 59(11) (2010) 3529–3534.
[5] C. Ampadu and A.H. Ansari, Fixed point theorems in complete multiplicative metric spaces with application to multiplicative analogue of C-class functions, J. Fixed Point Theory Appl. 11(2) (2016) 113–124.
[6] A.H. Ansari, Note on φ − ψ-contractive type mappings and related fixed point, The 2nd Regional Conf. Math. Appl. Payame Noor University (2014) 377–380.
[7] A.H. Ansari, Note on α−admissible mappings and related fixed point theorems, The 2nd Regional Conf. Math. Appl. Payame Noor University (2014) 373–376.
[8] A.H. Ansari, S. Chandok and C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions, J. Inequal. Appl. 429 (2014) 1–17.
[9] A.H. Ansari, M. Berzig and S. Chandok, Some Fixed Point Theorems for (CAB)-contractive Mappings and Related Results, Math. Moravica 19(2) (2015) 97–112.
[10] A.H. Ansari and S. Shukla, Some fixed point theorems for ordered F-(F, h)-contraction and subcontractions in 0-f-orbitally complete partial metric spaces, J. Adv. Math. Stud. 9(1) (2016) 37–53.
[11] A.H. Ansari, S. Chandok, N. Hussain and L. Paunovi´c, Fixed points of (ψ, φ)−weak contractions in regular cone metric spaces via new function, J. Adv. Math. Stud. 9(1) (2016) 72–82.
[12] A.H. Ansari, G.K. Jacob, M. Marudai and P. Kumam, On the C-class functions of fixed point and best proximity point results for generalised cyclic-coupled mappings, Cogent Math. Stat. 3(1) (2016) 1235354.
[13] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrales, Fund. Math. 3 (1992) 133–181.
[14] V. Berinde, Contract¸ii generalizate ¸si aplicat¸ii, vol. 2, Editura Cub Press, Baia Mare, Romania, 1997.
[15] M. Berzig, E. Karapınar and A. Rold´an., Discussion on generalized-(αψ, βφ)-contractive mappings via generalized altering distance function and related fixed point theorems, Abstr. Appl. Anal. 2014 (2014) Article ID 634371.
[16] M. Berzig and E. Karapınar, Fixed point results for (αψ, βϕ)-contractive mappings for a generalized altering distance, Fixed Point Theory Appl. 205(1) (2013) 1–18.
[17] S. Chandok, D. Kumar and C. Park, C*−algebra valued partial metric space and fixed point theorems, Proc. Math. Sci. 129(3) (2019) 1–9.
[18] S.K. Chatterjea, Fixed point theorem, C. R. Acad. Bulgare Sci. 25 (1972) 727–730.
[19] P.N. Dutta and B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. 2008 (2008) 205.
[20] J. Dixmier, C*−Algebras, North-Holland Publ. Co., Amsterdam, New York, Oxford, 1977.
[21] M. Geraghty, On contractive mappings, Proc. Am. Math. Soc. 40 (1973) 604–608.
[22] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007) 1468–1476.
[23] N. Hussain, E. Karapinar, P. Salimi and F. Akbar, α−admissible mappings and related fixed point theorems, J. Inequal. Appl. 1 (2013) 1–11.
[24] J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces, Nonlinear Anal. 74 (2011) 768–774.
[25] M. Joshi, A. Tomar, H.A. Nabwey and R. George, On unique and nonunique fixed points and fixed circles in Mb v−metric space and application to cantilever beam problem, J. Funct. Spaces 2021 (2021) Article ID 6681044.
[26] M. Joshi and A. Tomar, On unique and non-unique fixed points in metric spaces and application to chemical sciences, J. Funct. Spaces 2021 (2021) Article ID 5525472.
[27] M. Joshi, A. Tomar and S.K. Padaliya, On geometric properties of non-unique fixed points in b−metric spaces, Chapter in a book “Fixed Point Theory and its Applications to Real World Problem” Nova Science Publishers, New York, USA. (2021) 33–50.
[28] M. Joshi, A. Tomar and S.K. Padaliya, Fixed point to fixed disc and application in partial metric spaces, Chapter in a book “Fixed point theory and its applications to real-world problem” Nova Science Publishers, New York, USA. (2021) 391–406.
[29] M. Joshi, A. Tomar and S.K. Padaliya, Fixed point to fixed ellipse in metric spaces and discontinuous activation function, Appl. Math. E-Notes 21 (2021) 225–237.
[30] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968) 71–76.
[31] M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984) 1–9.
[32] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat 29(6) (2015) 1189–1194.
[33] X.L. Liu, A. H. Ansari, S. Chandok and S. Radenovic, On some results in metric spaces, using auxiliary simulation functions, J. Comput. Anal. Appl. 24(6) (2018) 1103–1114.
[34] Z. Ma, L. Jiang and H. Sun, C*−Algebra valued metric spaces and related fixed point theorems, Fixed Point Theory
Appl. 206 (2014).
[35] S. Moradi and E. Analoei, Common fixed point of generalized (ψ, ϕ)−weak contraction mappings, Int. J. Nonlinear Anal. Appl. 3(1) (2012) 24–30.
[36] N.Y. Ozgur, N. Tas and U. Celik, New fixed-circle results on S−metric spaces, Bull. Math. Anal. 1134 Appl. 9(2) (2017) 10–23.
[37] N.Y. Ozgur and N. Tas, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conf. Proc. 1926 (2018) 020048.
[38] N.Y. Ozgur and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 4 (42) (2019) 1433–1449.
[39] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47(4) (2001) 2683–2693.
[40] A.F. Roldan-Lopez-de Hierro, E. Karapınar, C. Roldan-Lopez-de Hierro and J. Martınez-Morenoa, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math. 275 (2015) 345–355.
[41] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
[42] N. Saleem, A.H. Ansari and M.K. Jain, Some fixed point theorems of inverse C-class function under weak semi compatibility, J. Fixed Point Theory 9 (2018).
[43] P. Salimi, C. Vetro, P. Vetro, Fixed point theorems for twisted (α, β) ψ−contractive type mappings and applications, Filomat 27 (2013) 605–615.
[44] B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α − ψ contractive type mappings, Nonlinear Anal. 75 (2012) 2154–2165.
[45] S. Shukla and S. Radenovi´c, Some common fixed point theorems for F−contraction type mappings in 0−complete partial metric spaces, J. Math. 2013 (2013) Article ID 878730.
[46] S. Shukla, S. Radenovi´c and Z. Kadelburg, Some fixed point theorems for ordered F−generalized contractions in 0− f−orbitally complete partial metric spaces, Theory Appl. Math. Comput. Sci. 4(1) (2014) 87–98.
[47] A. Tomar and M. Joshi, Note on results in C*−algebra valued metric spaces, Electron. J. Math. Anal. Appl. 9(2) (2021) 262–264.
[48] A. Tomar, M. Joshi, A. Deep, Fixed points and its applications in C*−algebra valued partial metric space, TWMS J. App. And Eng. Math. 11(2) (2021) 329–340.
[49] A. Tomar, M. Joshi, and S. K. Padaliya, Fixed Point to Fixed Circle and Activation Function in Partial Metric Space, J. Appl. Anal. 28(1) (2021).
[50] A. Tomar and M. Joshi, Near fixed point, near fixed interval circle and near fixed interval disc in metric interval space, Chapter in a book “Fixed Point Theory and its Applications to Real World Problem” Nova Science Publishers, New York, USA. (2021) 131-150.
[51] Q. Zhang and Y. Song, Fixed point theory for generalized φ−weak contractions, Appl. Math. Lett. 22 (2009) 75–78.