Counting of Conjugacy classes in partial transformation semigroup.

Document Type : Research Paper


Department of Mathematics, Central University of Kashmir, Ganderbal-191201, India


J.Koneiczny in [8] introduced the new notion $\sim_{n}$ notion of conjugacy in semigroups. In this paper, we count the number of conjugacy classes in Partial Transformation semigroup $\mathcal{P}(A)$ for an infinite set $A$ with respect to $\sim_{n}$ notion of conjugacy. 


[1] A. H. Shah and M. R. Parray, On ∼n notion of conjugacy in semigroups, to appear.
[2] D. J. Mir, A. H. Shah and S. A. Ahanger, On automorphisms of monotone transformation posemigroups, AsianEur. J. Math., (2021).
[3] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigroup Forum, 29 (1984) 223-240.
[4] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigroup Forum, 78 (2009) 14-20.
[5] G. Lallement, Semigroups and Combinatorial Applications, John Wiley and Sons, New York, 1979.
[6] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, to appear in Proc. Roy. Soc. Edinburgh Sect. A, preprint (2015), arXiv:1503.00915v2.
[7] J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra, 403 (2014) 93-134.
[8] J. Koneicny, A new definition of conjugacy for semigroups, J. Algebra and Appl., 17(02)(2018) 185002.
[9] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[10] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.
Volume 13, Issue 1
March 2022
Pages 1909-1915
  • Receive Date: 27 July 2021
  • Accept Date: 13 November 2021