[1] S.A. Deevi, C.P. Kaniraja, V.D. Mani, D. Mishra, S. Ummar and C. Satheesh, HeartNetEC: a deep representation
learning approach for ECG beat classification, Biomed. Eng. Lett. 11 (2021) 69—84.
[2] J. Ferretti, V. Randazzo, G. Cirrincione and E. Pasero, 1-D convolutional neural network for ECG arrhythmia
classification, Prog. Artific. Intell. Neural Syst. 184 (2021) 269–279,
[3] S.I. Haider and M. Alhussein, Detection and classification of baseline-wander noise in ECG signals using discrete
wavelet transform and decision tree classifier, Elektron. Elektrotechnika 25(4)(2019) 47—57.
[4] B.M. Mathunjwa, Y. Tsong Lin, Ch. Hung Lin, M. F. Abbod and J. Shing Shieh, ECG arrhythmia classification
by using a recurrence plot and convolutional neural network, Biomed. Signal Proces. Control. 64 (102262) (2021.
[5] F. Meneguitti Dias, H. L.M. Monteiro, Th. Wulfert Cabral, R. Naji, M. Kuehni and E. Jos´e da S. Luz, Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm, Comput. Meth. Prog. Biomed.
202(105948) (2021).
[6] S.K. Mohapatra and M.N. Mohanty, Convolutional Neural Network Based Arrhythmia Classification with Selective
Features from Empirical Mode Decomposition, Proc. Second Int. Conf. Inf. Manag. Machine Intell. Lecture Notes
in Networks and Systems, Singapore, 166 (2021) 375–383.
[7] S.K. Pandey and R.R. Janghel, Automated detection of arrhythmia from electrocardiogram signal based on new
convolutional encoded features with bidirectional long short-term memory network classifier, Phys. Eng. Sci. Med
(2021).
[8] G. Petmezas, K. Haris, L. Stefanopoulos, V. Kilintzis, A. Tzavelis, J. A Rogers, A. K Katsaggelos and N.
Maglaveras, Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG
Datasets, Biomed. Signal Proces. Control. 63(102194) (2021).
[9] A. Peimankar and S. Puthusserypady, DENS-ECG: A deep learning approach for ECG signal delineation, Expert
Syst. Appl. 165 (113911) (2021).
[10] M. Rashed-Al-Mahfuz, M.A. Moni, P. Lio, S M. Shariful Islam, S. Berkovsky, M. Khushi and J.M.W. Quinn,
Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions, Biomed.
Eng. Lett. 11 (2021) 147—162.
[11] S. Sakib, M. M. Fouda and Z. M. Fadlullah, A rigorous analysis of biomedical edge computing: An arrhythmia classification use-case Lleveraging deep learning, 2020 IEEE Int. Conf. Internet Things Intell. Syst. BALI,
Indonesia, (2021) 136–141.
[12] U. Satija, B. Ramkumar and M.S. Manikandan, A review of signal processing techniques for electrocardiogram
signal quality assessment, IEEE Rev. Biomed. Engin. 11(1) (2018) 36-–52.
[13] X. Wang, Y. Zhou, M. Shu, Y. Wang and A. Dong, ECG baseline wander correction and denoising based on
sparsity, IEEE Access, 7 (2019) 31573-–31585.
[14] [https://www.physionet.org/physiobank/database/mitdb/ ”PhysioBank,” vol. 2004: Physionet.].
[15] [https://en.wikipedia.org/].
[16] News : [https://www.who.int/health-topics/cardiovascular-diseasestab=tab 1].