[1] A.R. Khan and M.A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications, Comput. Math. Appl. 59 (2010) 2990– 2995.
[2] J.K. Kim, K. S. Kim and S.M. Kim, Convergence theorems of implicit iteration process for for finite family of asymptotically quasi-nonexpansive mappings in convex metric space, Nonlinear Anal. Convex Anal. 1484 (2006) 40–51.
[3] Q.Y. Liu, Z.B. Liu and N.J. Huang, Approximating the common fixed points of two sequences of uniformly quasiLipschitzian mappings in convex metric spaces, Appl. Math. Comp. 216 (2010) 883–889.
[4] G. Modi and B. Bhatt, Fixed point results for weakly compatible mappings in convex G-metric space, Int. J. Math. Stat. Inven. 2(11) (2014) 34–38.
[5] Z. Mustafa, A New Structure For Generalized Metric Spaces – With Applications To Fixed Point Theory, PhD Thesis, the University of Newcastle, Australia, 2005.
[6] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear and Convex Anal. 7(2) (2006) 289–297.
[7] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008) Article ID 189870.
[8] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math. Math. Sci. 2009 (2009) Article ID 283028.
[9] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces, CUBO Math. J. 12(1) (2010) 83–93.
[10] W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep. 22 (1970) 142–149.
[11] I. Yildirim and S. H. Khan, Convergence theorems for common fixed points of asymptotically quasi-nonexpansive mappings in convex metric spaces, Appl. Math. Comput. 218(9) (2012) 4860–4866.