[1] C.O. Alves, F.J.S.A. Correa, T.F .Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49(1) (2005) 85-93.
[2] C. Chen, Y. Kuo, T.F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Dif. Eqs., 250(4) (2011) 1876-1908.
[3] Y. Ilyasov, On extreme values of Nehari manifold method via nonlinear Rayleigh’s quotient, Top. Meth. Non. Anal., 49(2) (2017) 683-714.
[4] Y. Ilyasov, K. Silva, On branches of positive solutions for p-Laplacian problems at the extreme value of the Nehari manifold method, Proc. Amer. Math. Soc., 146(7) (2018) 2925-2935[5] G. Kirchhoff, Mechanik. Teubner, Leipzig (1883).
[6] J.L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud, 30 (1978) 284-346.
[7] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95,(1960), 101-123.
[8] Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961) 141-175.
[9] S.I. Pokhozhaev, The fibrationmethod for solving nonlinear boundary value problems, Trudy Mat. Inst. Steklov., 192 (1990) 146-163.
[10] G. Siciliano, K. Silva, The fibering method approach for a non-linear schro¨dinger equation coupled with the electromagnetic field, Publ. Mat., 64 (2020) 373–390.
[11] K. Silva, A. Macedo, Local minimizers over the Nehari manifold for a class of concave-convex problems with sign changing nonlinearity, J. Dif. Eqs., 265(5) (2018) 1894-1921.
[12] K. Silva, The bifurcation diagram of an elliptic Kirchhoff-type problem with respect to the stiffness of the material, Z. Angew. Math. Phys., 70(93) 2019 1-13.
[13] J. Sun, T.F. Wu, Existence and multiplicity of solutions for an indefinite Kirchhoff-type equation in bounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 146(2) (2016) 435-448.
[14] Q.G. Zhang, H.R. Sun, J.J. Nieto, Positive solution for a superlinear Kirchhoff type problem with a parameter, Nonl. Anal., 95 (2014) 333-338.
[15] Z. Zhang, K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317(2) (2006) 456-463.