[1] N.U. Ahmed and X. Ding, A semilinear Mckean-Vlasov stochastic evolution equation in Hilbert spaces, Stochastic
Process Appl. 60 (1995) 65–85.
[2] D.D. Bainov and P.S. Simenov, Systems with Impulse Effect, Ellis Horwood, Chichester,1989.
[3] K. Balachandran, S. Karthikeyan and J.Y. Park, Controllability of stochastic systems with distributed delays in
control, Int. J. Control 82 (2009) 1288–1296.
[4] G. Ballinger, X. Liu, Boundness for impulsive delay differential equations and applications to population growth
models, Nonlinear Anal. Theory Methods Appl. 53 (2003) 1041–1062.
[5] Y.K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces,
Chaos Solitons & Fractals 33 (2007) 1601–1609.
[6] R. Curtain, H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, New York: Springer,
1995.
[7] J.P. Dauer and N.I. Mahmudov, Controllability of stochastic semilinear functional differential equations in Hilbert
spaces, J. Math. Anal. Appl. 290 (2004) 373–394.
[8] J.P. Dauer, N.I. Mahmudov and M.M. Matar, Approximate controllability of backward stochastic evolution equations in Hilbert spaces, J. Math. Anal. Appl. 323 (2006) 42–56.[9] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Uni. Press, Cambridge,
1992.
[10] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
[11] T.E. Govindan, Stability of mild solutions of stochastic evolution equations with variable delay, Stochastic Anal.
Appl. 21 (2003) 1059–1077.
[12] E. Hernandez, M. Rabello and H.R. Henriquez, Existence of solutions for impulsive partialneutral functional
differential equations, J. Math. Anal. Appl. 331 (2007) 1135–1158.
[13] Z. He, X. He, Periodic boundary value problems for first order impulsive integrodifferential equations of mixed
type, J. Math. Anal. Appl. 296 (2004) 8–20.
[14] J. Klamka, Constrained controllability of semilinear systems with multiple delays in control, Bull. Polish Academy
Sci. Technical Sci. 52 (2004) 25–30.
[15] J. Klamka, Stochastic controllability of linear systems with delay in control, Bull. Polish Academy Sci. Technical
Sci. 55 (2007) 55 23–29.
[16] V. Lakshmikantham, D.D. Bainov and P.S. Simenov, Theory of Impulsive Differential Equations, World scientific,
Singapore, 1989.
[17] M.L. Li, M.S. Wang and F.Q. Zhang, Controllability of impulsive functional differential systems in Banach spaces,
Chaos, Solitons & Fractals 29 (2006) 175–181.
[18] N.I. Mahmudov, On controllability of linear stochastic systems in Hilbert spaces, J. Math. Anal. Appl. 259 (2001)
64–82.
[19] N.I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in
abstract spaces, SIAM J. Control Optim. 42 (2003) 1604–1622.
[20] N.I. Mahmudov, Controllability of stochastic semilinear functional differential equations in Hilbert spaces, J.
Math. Anal. Appl. 290 (2004) 373–394.
[21] A. Pazy, Semigroups of Linear Operators and Applications to Partial DifferentialEquations, Springer-Verlag,
Berlin, 1983.
[22] B. Radhakrishnan and P. Chandru, Boundary controllability of impulsive integrodifferential evolution systems
with time-varying delays, J. Taibah Uni. Sci. 12 (2018) 520–531.
[23] B. Radhakrishnan and T. Sathya, Controllability and periodicity results for neutral impulsive evolution system in
Banach spaces, Dynamics of Continuous, Discrete Impulsive Syst. 26(4) (2019) 261–277.
[24] B. Radhakrishnan and M. Tamilarasi, Existence of solutions for quasilinear random impulsive neutral differential
evolution equation, Arab J. Math. Sci. 24(2) (2018) 235–246.
[25] B. Radhakrishnan and M. Tamilarasi, Existence, uniqueness and stability results for fractional hybrid pantograph
equation with random impulse, Dynamics Continuous, Discrete Impulsive Systems Series B: Appl. & Algorithms
28(3) (2021) 165–181.
[26] B. Radhakrishnan, M. Tamilarasi and P. Anukokila, Existence, uniqueness and stability results for semilinear
integrodifferential non-local evolution equations with random impulse, Filomat 32(19) (2018) 6615–6626.
[27] R. Subalakshmi and K. Balachandran, Approximate controllability of neutral stochastic integrodifferential systems
in Hilbert spaces, Elect. J. Diff. Equ. 162 (2008) 1–15.
[28] R. Subalakshmi and K. Balachandran, Approximate controllability of nonlinear stochastic impulsive integrodifferential systems in Hilbert spaces, Chaos, Solitons & Fractals 42 (2009) 2035–2046.
[29] H. Zhang, Z. Hang and G. Feng, Reliable dissipative control for stochastic impulsive systems, Automatica 44
(2008) 1004–1010.