[1] E. J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamic —II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. with Appl. 19(8) (1990) 147–161.
[2] J. Li and C. S. Chen, Some observations on unsymmetric radial basis function collocation methods for convection-diffusion problems, Int. J. Numer. Meth. Engng. 57 (2003) 1085–1094.
[3] S. Chantasiriwan, Multiquadric collocation method for time-dependent heat conduction problems with temperature-dependent thermal properties, J Heat Transf Trans ASME 129(2) (2007) 109–113.
[4] Y. Duan, P.F. Tang, T.Z. Huang and S.J. Lai, Coupling projection domain decomposition method and Kansa’s method in electrostatic problems, Comput. Phys. Commun. 180(2) (2009) 209–214.
[5] W. Chen, L. Ye and H. Sun, Fractional diffusion equations by the Kansa method, Comput. Math. Appl. 59(5) (2010) 1614–1620.
[6] G. E. Fasshauer, RBF collocation methods as pseudospectral methods, WIT transactions on modelling and simulation. 2005.
[7] M. Uddin, S. Haq, and M. Ishaq, RBF-Pseudospectral Method for the Numerical Solution of Good Boussinesq Equation, Appl. Math. Sci. 6(49) (2012) 2403-2410.
[8] M. Uddin, RBF-PS scheme for solving the equal width equation, Appl. Math. Comput. 222 (2013) 619-631.
[9] A. Krowiak, Radial basis function-based pseudospectral method for static analysis of thin plates, Eng. Anal. Bound Elem. 71 (2016) 50-58.
[10] D. Rostamy, M. Emamjome and S. Abbasbandy, A meshless technique based on pseudospectral radial basis functions method for solving the two- dimensional hyperbolic telegraph equation, Eur. Phys. J. Plus 132 (2017) 263.
[11] A. Chowdhury and A. Biswas, Singular solitons and numerical analysis of φ–four equation, Math. Sci. 6 (2012) 42.
[12] A.H. Bhrawy, L.M. Assas, and M.A. Alghamdi, An efficient spectral collocation algorithm for nonlinear Phi-four equations, Bound. Value Probl. 2013 (2013) 87.
[13] W. K. Zahra, W. A. Ouf, and M. S. El-Azab, A robust uniform B-spline collocation method for solving the generalized PHI-four equation, Appl. Appl. Math. 11(1) (2016) 384-396.
[14] H. Triki and AM. Wazwaz, Envelope solitons for generalized forms of the phi-four equation, J. King Saud Univ. Sci. 25 (2013) 129–133.
[15] M. Najafi, Using He’s Variational Method to Seek the Traveling Wave Solution of PHI-Four Equation, Int. J. Appl. Math. Res. 1(4) (2012) 659.
[16] S.T. Demiray and H. Bulut, Analytical solutions of Phi-four equation, Int. J. Optim. Control, Theor. Appl. 7(3) (2017) 275-280.
[17] G. E. Fasshauer and J. G. Zhang, On choosing “optimal” shape parameters for RBF approximation, Numer. Algorithms 45(1) (2007) 345-368.
[18] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv. Comput. Math. 11(2) (1999) 193-210.