[1] M. Byra, Discriminant analysis of neural style representations for breast lesion classification in ultrasound, Biocyber. Biomed. Engin. 38(3) (2018) 684–690.
[2] J. Z. Cheng, D. Ni, Y.H. Chou, J. Qin, C.M. Tiu, Y.C. Chang, C.S. Huang, D. Shen and C.M. Chen, Computeraided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary ndules in CT scans, Scientific Rep. 6(1) (2016) 1–13.
[3] F. Cui, Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment, Computer Commun. 150 (2020) 818–827.
[4] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recogn. (2016) 770–778.
[5] P. Jain, S.C.P. Coogan, S.G. Subramanian, M. Crowley, S. Taylor and M.D. Flannigan, A review of machine learning applications in wildfire science and management, In Environmental Reviews, 28(4) (2020) 478–505.
[6] Z. Jiao, Y. Zhang, L. Mu, J. Xin, S. Jiao, H. Liu and D. Liu, A YOLOv3-based Learning Strategy for Real-time UAV-based Forest Fire Detection, Proc. 32nd Chinese Control Decision Conf., IEEE, (2020) 4963–4967.
[7] Z. Jiao, Y. Zhang, J. Xin, L. Mu, Y. Yi, H. Liu and D. Liu, A Deep learning based forest fire detection approach using uav and yolov3, 1st Int. Conf. Indust. Artif. Intell. (2019) 1–5.
[8] A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60(6) (2017) 84–90.
[9] S.B. Kukuk and Z.H. Kilimci, Comprehensive analysis of forest fire detection using deep learning models and conventional machine learning algorithms, Int. J. Comput. Experimental Sci. Engin. 7(2) (2021) 84–94.
[10] Y. LeCun, K. Kavukcuoglu and C. Farabet, Convolutional networks and applications in vision, ISCAS 2010-2010 IEEE Int. Symp. Circ. Syst.: Nano-Bio Circuit Fabrics Syst. (2010) 253–256.
[11] T. Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan and S. Belongie, Feature pyramid networks for object detection, Proc. 30th IEEE Conf. Computer Vision and Pattern Recogn. Janua 2017 936–944.
[12] G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A.W.M. van der Laak, B. van Ginneken and C.I. S´anchez, A survey on deep learning in medical image analysis, Medical Image Anal. 42 (2017) 60–88.
[13] T. Liu, J. Cheng, X. Du, X. Luo,L. Zhang, B. Cheng and Y. Wang, Video smoke detection method based on change-cumulative image and fusion deep network, Sensors 19(23) (2019) 50–60.
[14] B.S. Negara, R. Kurniawan, M.Z.A. Nazri, S.N.H.S. Abdullah, R.W. Saputraand and A. Ismanto, Riau forest fire prediction using supervised machine learning, J. Phys.: Conf. Ser. 1566(1) (2020) 12–20.
[15] Y. Peng and Y. Wang,Real-time forest smoke detection using hand-designed features and deep learning, Comput. Electr. Agricul. 167 (2019) 105029.
[16] H. Pranamurti, A. Murti and C. Setianingsih, Fire Detection Use CCTV with Image Processing Based Raspberry Pi, J. Phys.: Conf. Ser. 1201(1) (2019) 012015.
[17] M. Rahul, K. Shiva Saketh, A. Sanjeet and N. Srinivas Naik, Early detection of forest fire using deep learning, IEEE Region 10 Annual Int. Conf. (2020) 1136–1140.
[18] T. Schoennagel, J.K. Balch, H. Brenkert-Smith, P.E. Dennison, B.J. Harvey, M.A. Krawchuk, N. Mietkiewicz, P. Morgan, M.A. Moritz, R. Rasker, M.G. Turner and C. Whitlock, Adapt tomore wildfire in western North American forests as climate changes, Proc. Nat. Acad. Sci. United States Amer. 114(18) (2017) 4582–4590.
[19] A. Shamsoshoara, F. Afghah, A. Razi, L. Zheng,P. Z. Ful´e and E. Blasch, Aerial imagery pile burn detection using deep learning: The FLAME dataset, Computer Networks 193 (2021) 108001.
[20] D. Shen, G. Wu and H. Suk, Deep Learning in Medical Image Analysis, Annual Rev. Biomed. Engin. 19 (2017) 221–248.
[21] G. Shi, H. Yan, W. Zhang, J. Dodson, H. Heijnis and M. Burrows, Rapid warming has resulted in more wildfires in northeastern Australia, Sci. Total Envir. 771 (2020) 144888.
[22] H.C. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura and R.M. Summers, Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, IEEE Trans. Medical Imag. 35(5) (2016) 1285-1298.
[23] C. Szegedy, S. Ioffe, V. Vanhoucke and A.A. Alemi, Inception-v4, inception-ResNet and the impact of residual connections on learning, 31st AAAI Conf. Artificial Intell. (2017) 4278–4284.
[24] L. Vil`a-Vilardell, W. S. Keeton, D. Thom, C. Gyeltshen, K. Tshering and G. Gratzer, Climate change effects on wildfire hazards in the wildland-urban-interface – Blue pine forests of Bhutan, Forest Eco. Manag. 461 (2020) 117927.
[25] K. Weiss, T.M. Khoshgoftaar and D.D. Wang, A survey of transfer learning, J. Big Data 3(1) (2016) 1–40.
[26] R. Xu, H. Lin, K. Lu, L. Cao and Y. Liu, A forest fire detection system based on ensemble learning, Forests 12(2) (2021) 1–17.
[27] V. Yaloveha, D. Hlavcheva and A. Podorozhniak, Usage of convolutional neural network for multispectral image processing applied to the problem of detecting fire hazardous forest areas, Adv. Inf. Syst. 3(1) (2019) 116–120.