[1] M. Ahsan, M. Mashuri, H. Khusna and M. H. Lee, Multivariate Control Chart Based on Kernel PCA for Monitoring Mixed Variable and Attribute Quality Characteristics, Symmetry, 12 (11) (2020) 1838.
[2] M. E. Camargo, A. I. d. S. Dullius, W. P. Filho, S. L. Russo, M. R. Cruz, A. Galelli, G. F. da Silva, Multivariate quality control basead on discriminant analysis-ajusted variables, Aust. J. Basic Appl. Sci., 6 (1) (2012) 207-212.
[3] N. Das Non-parametric Control Chart for Controlling Variability Based on Rank Test, Econ. Qual. Control, 23 (2) (2008) 227-242.
[4] M. Frisen, On multivariate control charts, Producao, 21(2)(2011) 235-241.
[5] W. Gani, M. Limam, Performance Evaluation of One-Class Classification-based Control Charts through anIndustrial Application, Qual. Reliab. Eng., 29( 16) (2012) 841-854.
[6] W. Gani, M. Limam,A One-Class Classification-Based Control Chart Using the ??-Means Data Description Algorithm, J. Qual. Reliab. Eng., 2014 (2014) 1-9.
[7] G. Han, K. M. B. Chong, A Study on the Median Run Length Performance of the Run Sum S Control Chart, Int. J. Mech. Eng. Rob. Res., 8 (6 ) (2019) 885-889.
[8] Q. P. He, J. Wang, Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes,IEEE Trans. Semicond. Manuf. , 20 (4 ) (2007) 345-354.
[9] A. GH. Jaber and F. H. Enad, The Using of Multivariate Parametric Hottling -T 2 and Non-Parametric Bootstrap Charts in Quality Control Using Simulation, Muthanna Journal of Administrative and Economic Sciences , 10 (3)(2020) 8-22.
[10] S. Kazemi and S. Niaki , Monitoring image-based processes using a PCA-based control chart and a classification technique, Decis. Sci. Lett., 10 (1)(2020) 39-52.
[11] H. Kuswanto, M. Ahsan,Multivariate control chart based on PCA mix for variable and attribute quality characteristics, Prod. Manuf. Res., 6( 1 ) (2018) 364-384.
[12] W. Li, C. Zhang, Nonparametric monitoring of multivariate data via KNN learning,Int. J. Prod. Res. ,2 (2020) 1-16.
[13] M. Mashuri, H. Haryono, Tr(R2) control charts based on kernel density estimation for monitoring multivariate variability process, Cogent Eng., 6 (1) (2019) 1-37.
[14] G. Verdier and A. Ferreira , Adaptive Mahalanobis Distance and k-Nearest Neighbor Rule for Fault Detection in Semiconductor Manufacturing Adaptive Mahalanobis Distance and k-Nearest Neighbor Rule for Fault Detection in Semiconductor Manufacturing , IEEE, 24( 1) (2009) 1-21.
[15] T. Sukchotrat, S.B. Kim and F. Tsung, One-class classification-based control charts for multivariate process monitoring, IIE Trans. , 42 (2 ) (2010) 107- 120.
[16] https://www.mayoclinic.org/ar/diseases-conditions/coronavirus/symptoms-causes/syc-20479963.