[1] M. Akagi, Y. Nakamura, T. Higaki, K. Narita, Y. Honda, J. Zhou, Z. Yu, N. Akino and K. Awai, Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT, European Radiology 29(11) (2019) 6163–6171.
[2] V. Aladinskiy, A. Zhebrak, B. Zagribelnyy and V. Terentiev, Potential COVID-2019 3C-like protease inhibitors designed using generative deep learning approaches, Insilico Medicine Hong Kong Ltd A 307 (2020).
[3] A.A. Aljarrah and A. H. Ali, Human activity recognition using PCA and BiLSTM recurrent neural networks, 2nd Int. Conf. Engin. Technol. Appl. IEEE (2019).
[4] Y. Bai, L. Yao and T. Wei, Presumed asymptomatic carrier transmission of COVID-19, Jama 323(14) (2020) 1406–1407.
[5] D.J. Carretero, D. B. Pelaez, G.R. Washko and F.N. Rahaghi, Pulmonary artery–vein classification in CT images using deep learning, IEEE Trans. Medical Imag. 37(11) (2018) 2428–2440.
[6] J. Cohen and D. Normile, New SARS-like virus in China triggers alarm, Sci. 367(6475) (2020) 234–235.
[7] V.M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D.K. Chu, T. Bleicker and S. Brunink, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro Surveill. 25(3) (2020) 2000045.
[8] A.F. Gad, Practical Computer Vision Applications Using Deep Learning with CNNs, Apress, 2018.
[9] M. Gharbi, J. Chen, J.T. Barron, S.W. Hasinoff and F. Durand, Deep bilateral learning for real-time image enhancement, ACM Trans. Graphics 36(4) (2017) 1–12.
[10] M.H. Hesamian, W. Jia, X. He and P. Kennedy, Deep learning techniques for medical image segmentation: achievements and challenges, J. Digital Imag. 32(4) (2019) 582–596.
[11] P. Kim, MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence, Apress, 2017.
[12] D.P. Kingma and J. Ba, Adam: A method for Stochastic Optimization, arXiv preprint arXiv:1412.6980, (2014)1–15.
[13] P. Liu, L. Shi, W. Zhang, J. He, C. Liu, C. Zhao, S.K. Kong, J.F. Chuen Loo, D. Gu and L. Hu, Prevalence and genetic diversity analysis of human coronaviruses among cross-border children, Virology J. 14(1)(2017) 1–8.
[14] X. Liu, S. Guo, B. Yang, S. Ma, H. Zhang, J. Li, C. Sun, L. Jin and X. Li, Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks, J. Digital Imag. 31(5) (2018) 748–760.
[15] B. Moons, D. Bankman and M. Verhelst, Embedded Deep Learning, Springer, 2018.
[16] J. Nagi, F. Ducatelle, G.A.D. Caro, D. Cire¸san, U. Meier, A. Giusti, F. Nagi and J. Schmidhube, Max-pooling convolutional neural networks for vision-based hand gesture recognition, IEEE Int Conf Signal Image Proces Appl (2011) pp. 342–347.
[17] Y. Qu, E. Kang and H. Cong, Positive result of Sars-Cov-2 in sputum from a cured patient with COVID-19, Travel Medic. Infect. Disease 34 (2020) 101619.
[18] M. Sokolova and G. Lapalme, A systematic analysis of performance measures for classification tasks, Inf. Process. Manag. 45(4) (2009) 427–437.
[19] X. Xu, X. Jiang, C. Ma, P. Du and X. Li, A deep learning system to screen novel coronavirus disease 2019 pneumonia, Engin. 6(10) (2020) 1122–1129.
[20] X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia and H. Liu, Clinical course and outcomes of critically ill patients with SARSCoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respiratory Medicine 8(5) (2020) 475–481.
[21] P. Yu, J. Zhu, Z. Zhang and Y. Han, A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period, J. Infect. Diseases 221(11) (2020) 1757–1761.
[22] W. Zhu, Y. Huang, L. Zeng, X. Chen, Y. Liu, Z. Qian, W. Fan and X. Xie, AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy, Medical Phys. 46(2) (2019) 576–589.