[1] R. Abdul-Jabbar, Caputo definition for finding fractional moments of power law distribution functions, Int. J. Nonlinear Anal. Appl. 13(1) (2022) 1131–1136.
[2] K.B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, New York, Academic, 1974.
[3] K. Singh, R. Saxena and S. Kumar, Caputo-based fractional derivative in fractional Fourier transform domain, IEEE J. Emerg. Selected Topics in Circ. Syst. 3(3) (2013) 330–337.
[4] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014) 65–70.
[5] I.B. Bapna and N. Mathur, Application of fractional calculus in statistics, Int. J. Contemp. Math. Sci. 7(18) (2012) 849–856.
[6] B. Yu, X. Jiang and H. Qi, An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid, Acta Mech. Sin. 31(2) (2015) 153-–161.
[7] G. Cottone and M. Di paola, On the use of fractional calculus for the probabilistic characterization of random variables, Probabil. Egineer. Mech. Phys. A 389 (2010) 909—920.