[1] G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender system: A survey of the state-ofthe-art and possible extensions, IEEE Trans. Knowledge and Data Engin. 17(6) (2005) 734–749.
[2] C.C. Aggarwal, Recommender Systems: The Textbook, Cham. Springer Publishing Company, 1, 2016.
[3] W. Ali, S.U. Din, A.A. Khan, S. Tumrani, X. Wang and J. Shao, Context-aware collaborative filtering framework for rating prediction based on novel similarity estimation, Comput. Mater. Continua 63(2) (2020) 1065–1078.
[4] S. Bhatia, R. Madan, S.L. Yadav and K.K. Bhatia, An algorithmic approach based on principal component analysis for aspect-based opinion summarization, Int. Conf. Comput. Sustainable Global Develop. (2019) 874–879.
[5] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 1st (reprint) ed., New York, 2006.
[6] M. Bressan, S. Leucci, A. Panconesi, P. Raghavan and E. Terolli, The limits of popularity-based recommendations, and the role of social ties, Int. Conf. Knowledge Discovery and Data Mining (2016) 745–754.
[7] M. Ebady Manaa, A.J. Obaid and M.H. Dosh, Unsupervised approach for email spam filtering using data mining, EAI Endorsed Trans. Energy Web 8(36) (2021).
[8] Z. Gulzar, A.A. Leema and G. Deepak, PCRS: personalized course recommender systems based on hybrid approach, Proceedia Computer Sci. 125 (2018) 518–524.
[9] A. Gunawardana and G. Shani, Evaluating Recommender Systems, Recommender Systems Handbook, Boston, MA, Springer, 2015.
[10] I. Hariyale and M.M. Raghuwanshi, Design of recommender system using content based filtering and collaborative filtering technique: a comparative study, Int. J. Adv. Sci. Tech. 29(05) (2020) 4852–4865.
[11] F.O. Isinkaye, Y.O. Folajimi and B.A. Ojokoh, Recommendation systems: principles, methods and evaluation, Egyptian Inf.J. 16(3) (2015) 261–273.
[12] A. Kennedy and D. Inkpen, Sentiment classification of movie and product reviews using contextual valence shifters, Comput. Intell. 22(2) (2006) 110–125.
[13] S.S. Khatri, D. Singh, B. Narain, S. Bhatia, M.T. Quasim and G.R. Sinha, An empirical analysis of machine learning algorithms for crime prediction using stacked generalization: an ensemble approach, IEEE Access 9 (2021) 67488–67500.
14] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, The 3rd Int. Conf. Learning Represent. ICLR 2015, (2015).
[15] X. Liang, X. Zhonghang, P. Liping, L. Zhang, H. Zhang, Measure prediction capability of data for collaborative filtering, Knowledge and Inf. Syst. 49(3) (2016) 975–1004.
[16] N. Maxim, D. Mudigere, H.J.M. Shi, J. Huang and N. Sundaraman, J. Park, X. Wang, U. Gupta, C.-J. Wu, A.G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong and M. Smelyanskiy, Deep learning recommendation model for personalization and recommendation systems, Conf. Workshop on Neural Inf. Proc. Syst. (2019) 1–10.
[17] F.H. Maxwell and J.A. Konstan, The movielens datasets: history and context, ACM Trans.Interact. Intell. Syst. 5(4) (2016) 1–19.
[18] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M.J. Franklin, R. Zadeh, M. Zaharia and A. Talwalkar, Mllib: Machine learning in Apache spark, J. Machine Learn. Res. 17(1) (2016) 1235–1241.
[19] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado and J. Dean, Distributed representations of words and phrases and their compositionality, Adv. Neural Inf. Proc. Syst. (2013) 3111–3119.
[20] A.J. Obaid, K.A. Alghurabi, S.A.K. Albermany and S. Sharma, Improving Extreme Learning Machine Accuracy Utilizing Genetic Algorithm for Intrusion Detection Purposes, In: R. Kumar, N.H. Quang, V.K. Solanki, M. Cardona and P.K. Pattnaik (eds), Research in Intelligent and Computing in Engineering, Adv. Intell. Syst. Comput. 1254 (2021).
[21] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVit, Z. Lin, A. Desmaison, L. Antiga and A. Lerer, Automatic differentiation in pytorch, Proc. Neural Inf. Proces. Syst. (2017) 1–4.
[22] N.S. Patil, P. Kiran, N.P. Kavya and K.M. Patel, A survey on graph database management techniques for huge unstructured data, Int. J. Elect. Comput. Engin. 8(2) (2018) 1140–1149.
[23] S. Puglisi, J.P. Arnau, J. Forn´e and D. R. Monedero, On content-based recommendation and user privacy in social-tagging systems, Computer Standards & Interfaces, 41 (2015) 17–27.
[24] S. Sen, A. Mehta, R. Ganguli and S. Sen, Recommendation of influenced products using association rule mining: neo4j as a case study, SN Compu. Sci., 2(2) (2021) 1–17.
[25] A. Sharaff and M. Choudhary, Comparative analysis of various stock prediction techniques, Int. Conf. Trends Elect. Inf. (2018) 735–738.
[26] A. Sharaff and U. Srinivasarao, Towards classification of email through selection of informative features, Int. Conf. Power, Control Comput.Technol. (2020) 316–320.
[27] P.K. Singh, P.K.D. Pramanik, A.K. Dey and P. Choudhury, Recommender systems: an overview, research trends, and future directions, Int. J.Business Syst.Res. 15(1) (2021) 14–52.
[28] J. Wei, J. He, K. Chen, Y. Zhou and Z. Tang, Collaborative filtering and deep learning based recommendation system for cold start items, Expert Syst. Appl. 69 (2017) 29–39.
[29] L. Wu, Q. Liu, E. Chen, N.J. Yuan, G. Guo and X. Xie, Relevance meets coverage: a unified framework to generate diversified recommendations, ACM Trans. Intell. Syst. Technol. 7(3) (2016) 1–30.
[30] G. Xu, T. Zhijing, M. Chuang, L. Yanbing, D. Mahmoud, A collaborative filtering recommendation algorithm based on user confidence and time context, J. Elect.Comput. Engin. 2019 (2019) 1–12.
[31] J. Yangqing, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell, Caffe: convolutional architecture for fast feature embedding, Int. Conf. Multimedia (2014) 675–678.
[32] D. Yashar, A. Bellogin and T.D. Noia, Explaining recommender systems fairness and accuracy through the lens of data characteristics, Inf. Proces. Manag. 58(5) (2021) 102662–102686.
[33] R.B. Yates and B.R. Neto, Modern Information Retrieval, ACM Press, New York, 1999.
[34] Z. Yunhong, D. Wilkinson, R. Schreiber and R. Pan, Large-scale parallel collaborative filtering for the Netflix prize, Proc. Algorithmic Appl. Manag.(2008) 337–348.