[1] Q. N. Al-Kazaz and H. J. K. Al-Saadi, Comparing Bayes estimation with Maximum Likelihood Estimation of Generalized Inverted Exponential Distribution in Case of Fuzzy Data, J. Econ. Administrative Sci. , 23 (101) (2017).
[2] A. H. Ali and Q. N. N. AL-Qazaz, Fractional Brownian motion inference of multivariate stochastic differential equations, Periodicals of Eng. Nat. Sci.,8 (2020) 464-480.
[3] P. O. Amblard, J. F. Coeurjolly, Identification of the Multivariate Fractional Brownian Motion, IEEE Trans. Signal Process., 59(2011) 5152-5168.
[4] P. O. Amblard, C. J. Fran¸cois, F. Lavancier and A. Philippe, Basic properties of the Multivariate Fractional Brownian Motion, S´eminaires et congr`es, Soci´et´e math´ematique de France, 28(2013) 65-87 .
[5] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, 2008.
[6] J. Beran, Statistics for Long-Memory Processes, Chapman & Hall Imp An Int. Thomson Publishing Company, 1994.
[7] Y. Chang, Efficiently Implementing the Maximum Likelihood Estimator for Hurst Exponent, Hindawi Publishing Corporation, Math. Prob. Eng., 2014 (2014), Article ID 490568.
[8] J. Coeurjolly, P. Amblard and S. Achard, On multivariate fractional Brownian motion and multivariate fractional Gaussian noise, In: 2010 18th European Signal Process. Conf., Aalborg, 2010, pp. 1567-1571 .
[9] H. Haario, E. Saksman and J. Tamminen, Adaptive proposal distribution for random walk Metropolis algorithm, Bernoulli, 2001.
[10] Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance, Infinite Dimensional Analysis, Quantum Probability and Related Topics, World Scientific Publishing Company, 6 (1)(2003) 1-32, .
[11] S. Iacus and N. Yoshida, Simulation and Inference for Stochastic Processes with YUIMA, Springer 2018.
[12] A. Iranmanesh, M. Arashi, S. M. M. Tabatabaey, On Conditional Applications of Matrix Variate Normal Distribution. Iran. J. Math. Sciences and Inf., 5 (2)(2010) 33-43.
[13] M. Krzywda, Fractional Brownian Motion and applications to financial modeling, Jagiellonian University, Mathematics and Computer Science, Institute of Mathematics, Master Thesis, 2011.
[14] F. Lavancier, A. Philippe and D. Surgailis, Covariance function of vector self-similar process, Stat. Probab. Lett., 79 (2009).
[15] T. lundahl and W. ohley, Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture, IEEE Trans. Med. Imaging, mi-5 (3)(1986) 152-161 .
[16] H. Markowitz, Portfolio Selection, J. Finance, 7 (1)(1952) 77-91.
[17] S. K. Mitra, A density-free approach to matrix variate beta distribution, Indian J. Stat., Ser. A, 32 (1)(1970) 81-88.
[18] A. Pedersen, A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations, Scand. J. Stat., 22 (1)(1995) 55-57 .
[19] B. Pfaff, Financial Risk Modeling and Portfolio Optimization with R, 2nd Edition, Wiley & Sons, 2013.
[20] P. Rinng, P. Lind, M. Wachter and J. Peinke, The Langevin Approach: An R Package for Modeling Markov Processes, Cornell Univ., Physics. data-an, 2016.
[21] R. Yaari and I. Dattner, Simode: R Package for statistical inference of ordinary differential equations using separable integral-matching, 2019.
[22] G. Lim, S. Yong, J. Zhou, S. Yoon, J. Won and K. Kim, Dynamical Stochastic Processes of Returns in Financial Markets, Elsevier, Physica A: Stat. Mech. its Appl., 376 (1)(2005) 517-524.