[1] F. Akdeniz and E. A. Duran, Liu-type estimator in semiparametric regression models , J. Stat. Comput. Simul.,
80(8)(2010) 853–871.
[2] A. M. Al-Abood and D. H. Young, Improved deviance goodness of fit statistics for a gamma regression model ,
Commun. Stat. Methods, 15(6)(1986) 1865–1874.
[3] Z. Y. Algamal, Developing a ridge estimator for the gamma regression model , J. Chemom., 32(10)(2018) e3054.
[4] Z. Algamal, Shrinkage estimators for gamma regression model , Electron. J. Appl. Stat. Anal., 11(1)(2018) 253–
268, https://doi.org/10.1285/i20705948v11n1p253.
[5] M. I. Alheety and B. M. Golam Kibria, Modified Liu-type estimator based on (r− k) class estimator , Commun.
Stat. Methods, 42(2)(2013) 304–319.
[6] Y. Asar, Liu-type negative binomial regression: A comparison of recent estimators and applications , In: Trends
Perspect. Linear Stat. Inference , Springer, 2018. pp. 23–39.[7] Y. Asar and A. Gen¸c, New shrinkage parameters for the Liu-type logistic estimators , Commun. Stat. Comput.,
45(3)(2016) 1094–1103.
[8] M. R. Baye and D. F. Parker, Combining ridge and principal component regression: a money demand illustration
, Commun. Stat. Methods, 13(2)(1984) 197–205.
[9] P. De Jong and G. Z. Heller, Generalized linear models for insurance data , Cambridge Books, 2008.
[10] E. Dunder, S. Gumustekin, and M. A. Cengiz, Variable selection in gamma regression models via artificial bee
colony algorithm , J. Appl. Stat., 45(1)(2018) 8–16.
[11] A. E. Hoerl and R. W. Kennard, Ridge regression: applications to nonorthogonal problems , Technometrics,
12(1)(1970) 69–82.
[12] D. Inan and B. E. Erdogan, Liu-type logistic estimator , Commun. Stat. Comput., 42(7)(2013) 1578–1586.
[13] S. Ka¸cıranlar and S. Sakallıo˘glu, Combining the Liu estimator and the principal component regression estimator
, 2001.
[14] L. Kejian, A new class of blased estimate in linear regression , Commun. Stat. Methods, 22(2)(1993) 393–402.
[15] B. M. G. Kibria, Performance of some new ridge regression estimators , Commun. Stat. Comput., 32(2)(2003)
419–435.
[16] F. Kurto˘glu and M. R. Ozkale, ¨ Liu estimation in generalized linear models: application on gamma distributed
response variable , Stat. Pap., 57(4)(2016) 911–928.
[17] M. J. Mackinnon and M. L. Puterman, Collinearity in generalized linear models , Commun. Stat. methods,
18(9)(1989) 3463–3472.
[18] K. M˚ansson, On ridge estimators for the negative binomial regression model , Econ. Model., 29(2)(2012) 178–184.
[19] K. Mansson, B. M. G. Kibria, P. Sjolander, and G. Shukur, Improved Liu estimators for the Poisson regression
model , Int. J. Stat. Probab., 1(1)(2012) 2.
[20] K. M˚ansson and G. Shukur, A Poisson ridge regression estimator , Econ. Model., 28(4)(2011) 1475–1481.
[21] A. S. Malehi, F. Pourmotahari and K. A. Angali, Statistical models for the analysis of skewed healthcare cost
data: a simulation study , Health Econ. Rev., 5(1)(2015) 1–16.
[22] G. Muniz and B. M. G. Kibria, On some ridge regression estimators: An empirical comparisons , Commun. Stat.
Comput., 38(3)(2009) 621-630 .
[23] M. R. Ozkale and S. Kaciranlar, ¨ The restricted and unrestricted two-parameter estimators , Commun. Stat.
Methods, 36(15)(2007) 2707–2725.
[24] B. Segerstedt, On ordinary ridge regression in generalized linear models , Commun. Stat. Methods, 21(8)(1992)
2227–2246.
[25] R. L. Schaefer, L. D. Roi, and R. A. Wolfe, A ridge logistic estimator , Commun. Stat. Methods, 13(1)(1984)
99–113.
[26] N. N. Urgan and M. Tez, Liu estimator in logistic regression when the data are collinear , In: 20th Euro Mini
conf., 2008, pp. 323–327.
[27] M. Wasef Hattab, A derivation of prediction intervals for gamma regression , J. Stat. Comput. Simul.,
86(17)(2016) 3512–3526.
[28] J. Wu and Y. Asar, More on the restricted Liu estimator in the logistic regression model , Commun. Stat. Comput.,
46(5)(2017) 3680–3689.
[29] H. Yang and X. Chang, A new two-parameter estimator in linear regression , Commun. Stat. Methods, 39(6)(2010)
923–934.