Numerical and experimental full synchronization of 2×2 optoelectronic device network

Document Type : Research Paper

Authors

Al-Esraa University College, Iraq

Abstract

 Numerically and experimentally the full synchronization of 2×2 optoelectronic device network. By the using of 2×2 oscillator's network, every one of the oscillators has been considered as optocoupler (i.e. LED that has been coupled with photodetector). By fixing the strength of the feedback (E) and increasing the current of the bias (δ) of every one of the oscillators, the dynamic sequence like chaotic and periodic mixed-mode oscillations has been observed. Synchronization of unidirectionally coupled optoelectronic devices network has been featured when bias current equal to 4.4×104. Transitions between the synchronization and the non-synchronization states through spatiotemporal distributions have been investigated.

Keywords

[1] S.F. Abdalah, M. Ciszak, F. Marino, K. Al-Naimee, R. Meucci and F.T. Arecchi, Optoelectronic Feedback in
Semiconductor Light Sources: Optimization of Network Components for Synchronization, Optoelectronic Devices
and Properties, O. Sergiyenko (eds), IntechOpen, 2011.
[2] S.F. Abdalah, M. Ciszak, F. Marino, K. Al-Naimee, R. Meucci and F.T. Arecchi, Noise effects on excitable chaotic
attractors in coupled light-emitting diodes, IEEE Syst. J. 6 (2012) 558–563.
[3] S. Abdalah, K. Al-Naimee, M. Ciszak, F. Marino, R. Meucci and F.T. Arecchi, Chaos and mixed mode oscillations
in optoelectronic networks, Int. Rev. Phys. 7(3) (2013).
[4] H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Prog. Theor.
Phys. 69(1) (1983) 32–47.
[5] D.M. Kane and K.A. Shore, Unlocking Dynamical Diversity: Optical Feedback Effects On Semiconductor Lasers,
John Wiley & Sons, 2005.
[6] M. Khan and S.N. Pal, Synchronization of coupled chaotic systems using active control, Int. J. Appl. Mech. Engin.
17(4) (2012) 1347–1353.
[7] M. Khan, S.N. Pal and S. Poria, Generalized anti-synchronization of different chaotic systems, Int. J. Appl. Mech.
Engin. 17(1) (2012) 83–99.
[8] M.A. Khan and S. Poria, Generalization synchronization of bidirectionally coupled Chaotic Systems, Int. J. Appl.
Math. Res. 1(3) (2012) 303–313.
[9] H. Ghassan, K.A. Hubeatir and K.A.M. Al-Naimee, Spiking control in semiconductor laser with Ac- coupled
optoelectronic feedback, Aust. J. Basic Appl. Sci. 9(33) (2015) 416–426.
[10] Y. Liu, P. Davis and T. Aida, Synchronized chaotic mode hopping in DBR lasers with delayed opto-electronic
feedback, IEEE J. Quantum Electron. 37 (2001) 337–352.
[11] Y. Liu, P.C. de Oliveira, M.B. Danailov and J.R. Rios Leite, Chaotic and periodic passive Q switching in coupled
CO2 lasers with a saturable absorber, Phys. Rev. A. 50(4) (1994) 3464–3470.
[12] R. Mainieri and J. Rehacek, Projective synchronization in three–dimensional chaotic systems, Phys. Rev. Lett.
82(15) (1999) 3042–3045.[13] A.J. Obaid, Critical Research on the Novel Progressive, JOKER an Opportunistic Routing Protocol Technology
for Enhancing the Network Performance for Multimedia Communications, In: R. Kumar, N.H. Quang, V.K.
Solanki, M. Cardona and P.K. Pattnaik (eds), Research in Intelligent and Computing in Engineering, Adv. Intell.
Sys. Comput., 1254, Springer, Singapore, 2021.
[14] L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64(8) (1990) 821–824.
[15] R. Regin, A.J. Obaid, A. Alenezi, F. Arslan, A.K. Gupta and K.H. Kadhim, Node replacement based energy
optimization using enhanced Salp swarm algorithm (Es2a) in wireless sensor networks, J. Eng. Sci. Tech. 16(3)
(2021) 2487–2501.
[16] M.G. Rosenblum, A.S. Pikovsky and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett.
76(11) (1996) 1804–1807.
[17] M.G. Rosenblum, A.S. Pikovsky and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators,
Phys. Rev. Lett. 78(22) (1997) 4193–4196.
[18] R. Roy and K.S. Thornburg, Experimental synchronization of chaotic lasers, Phys. Rev. Lett. 72 (1994) 2009–
2012.
[19] T. Sugawara, M. Tachikawa, T. Tsukamoto and T. Shimisu, Observation of synchronization in laser chaos, Phys.
Rev. Lett. 72 (1994) 3502–3506.
[20] A. Tarai(Poria), S. Poria and P. Chatterjee, Synchronization of generalised linearly bidirectionally coupled unified
chaotic system, Chaos, Solitons Fractals 40(2) (2009) 885–892.
[21] X.D. Wang, L.X. Tian and L.Q. Yu, Linear feedback controlling and synchronization of eh Chen’s chaotic system,
Int. J. Nonlinear Sci. 2 (2006) 43–49.
[22] X. Wu and J. Hu, Parameter identification and back steeping control of uncertain system, Chaos, Solitons Fractals
18 (2003) 721–729.
[23] T. Yamada and H. Fujisaka, Stability theory of synchronized motion in coupled-oscillator Systems. II: The Mapping
Approach, Prog. Theor. Phys. 70(5) (1983) 1240–1248.
Volume 12, Special Issue
December 2021
Pages 1937-1946
  • Receive Date: 05 October 2021
  • Revise Date: 18 November 2021
  • Accept Date: 01 December 2021