Numerical and experimental full synchronization of $2\times 2$ optoelectronic device network

Document Type : Research Paper


Al-Esraa University College, Iraq


 Numerically and experimentally the full synchronization of $2\times 2$ optoelectronic device network. By the using of $2\times 2$ oscillator's network, every one of the oscillators has been considered as optocoupler (i.e. LED that has been coupled with photodetector). By fixing the strength of the feedback $(\mathcal{E})$ and increasing the current of the bias $(\delta)$ of every one of the oscillators, the dynamic sequence like chaotic and periodic mixed-mode oscillations has been observed. Synchronization of unidirectionally coupled optoelectronic devices network has been featured when bias current equal to $4.4\times 10^{-4}$. Transitions between the synchronization and the non-synchronization states through spatiotemporal distributions have been investigated.


[1] S.F. Abdalah, M. Ciszak, F. Marino, K. Al-Naimee, R. Meucci and F.T. Arecchi, Optoelectronic Feedback in
Semiconductor Light Sources: Optimization of Network Components for Synchronization, Optoelectronic Devices
and Properties, O. Sergiyenko (eds), IntechOpen, 2011.
[2] S.F. Abdalah, M. Ciszak, F. Marino, K. Al-Naimee, R. Meucci and F.T. Arecchi, Noise effects on excitable chaotic
attractors in coupled light-emitting diodes, IEEE Syst. J. 6 (2012) 558–563.
[3] S. Abdalah, K. Al-Naimee, M. Ciszak, F. Marino, R. Meucci and F.T. Arecchi, Chaos and mixed mode oscillations
in optoelectronic networks, Int. Rev. Phys. 7(3) (2013).
[4] H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Prog. Theor.
Phys. 69(1) (1983) 32–47.
[5] D.M. Kane and K.A. Shore, Unlocking Dynamical Diversity: Optical Feedback Effects On Semiconductor Lasers,
John Wiley & Sons, 2005.
[6] M. Khan and S.N. Pal, Synchronization of coupled chaotic systems using active control, Int. J. Appl. Mech. Engin.
17(4) (2012) 1347–1353.
[7] M. Khan, S.N. Pal and S. Poria, Generalized anti-synchronization of different chaotic systems, Int. J. Appl. Mech.
Engin. 17(1) (2012) 83–99.
[8] M.A. Khan and S. Poria, Generalization synchronization of bidirectionally coupled Chaotic Systems, Int. J. Appl.
Math. Res. 1(3) (2012) 303–313.
[9] H. Ghassan, K.A. Hubeatir and K.A.M. Al-Naimee, Spiking control in semiconductor laser with Ac- coupled
optoelectronic feedback, Aust. J. Basic Appl. Sci. 9(33) (2015) 416–426.
[10] Y. Liu, P. Davis and T. Aida, Synchronized chaotic mode hopping in DBR lasers with delayed opto-electronic
feedback, IEEE J. Quantum Electron. 37 (2001) 337–352.
[11] Y. Liu, P.C. de Oliveira, M.B. Danailov and J.R. Rios Leite, Chaotic and periodic passive Q switching in coupled
CO2 lasers with a saturable absorber, Phys. Rev. A. 50(4) (1994) 3464–3470.
[12] R. Mainieri and J. Rehacek, Projective synchronization in three–dimensional chaotic systems, Phys. Rev. Lett.
82(15) (1999) 3042–3045.[13] A.J. Obaid, Critical Research on the Novel Progressive, JOKER an Opportunistic Routing Protocol Technology
for Enhancing the Network Performance for Multimedia Communications, In: R. Kumar, N.H. Quang, V.K.
Solanki, M. Cardona and P.K. Pattnaik (eds), Research in Intelligent and Computing in Engineering, Adv. Intell.
Sys. Comput., 1254, Springer, Singapore, 2021.
[14] L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64(8) (1990) 821–824.
[15] R. Regin, A.J. Obaid, A. Alenezi, F. Arslan, A.K. Gupta and K.H. Kadhim, Node replacement based energy
optimization using enhanced Salp swarm algorithm (Es2a) in wireless sensor networks, J. Eng. Sci. Tech. 16(3)
(2021) 2487–2501.
[16] M.G. Rosenblum, A.S. Pikovsky and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett.
76(11) (1996) 1804–1807.
[17] M.G. Rosenblum, A.S. Pikovsky and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators,
Phys. Rev. Lett. 78(22) (1997) 4193–4196.
[18] R. Roy and K.S. Thornburg, Experimental synchronization of chaotic lasers, Phys. Rev. Lett. 72 (1994) 2009–
[19] T. Sugawara, M. Tachikawa, T. Tsukamoto and T. Shimisu, Observation of synchronization in laser chaos, Phys.
Rev. Lett. 72 (1994) 3502–3506.
[20] A. Tarai(Poria), S. Poria and P. Chatterjee, Synchronization of generalised linearly bidirectionally coupled unified
chaotic system, Chaos, Solitons Fractals 40(2) (2009) 885–892.
[21] X.D. Wang, L.X. Tian and L.Q. Yu, Linear feedback controlling and synchronization of eh Chen’s chaotic system,
Int. J. Nonlinear Sci. 2 (2006) 43–49.
[22] X. Wu and J. Hu, Parameter identification and back steeping control of uncertain system, Chaos, Solitons Fractals
18 (2003) 721–729.
[23] T. Yamada and H. Fujisaka, Stability theory of synchronized motion in coupled-oscillator Systems. II: The Mapping
Approach, Prog. Theor. Phys. 70(5) (1983) 1240–1248.
Volume 12, Special Issue
December 2021
Pages 1937-1946
  • Receive Date: 05 October 2021
  • Revise Date: 18 November 2021
  • Accept Date: 01 December 2021