Copy-move forgery detection using a bat algorithm with mutation

Document Type : Research Paper

Authors

1 Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

2 Department of Computer Engineering, Sepidan Branch, Islamic Azad University, Sepidan, Iran

Abstract

One of the challenges today is capturing fake images. One type of image forgery is a copy-move forgery. In this method, a part of the image is copy and placed at the most similar point. Due to the existing algorithms and processing software, it is not easy to detect forgery areas and has created challenges in various applications. Based on the Bat algorithm, the proposed method has tried to help detect fake images by finding forgery areas. The proposed method includes a simple image segmentation and detection of forgery areas with the help of the BAT Algorithm with Mutation. According to the proposed algorithm, the image is first grayed out, then divided into 100 pieces. The optimal Bat algorithm randomly selects some component image and performs a similarity search. The mutation operator is used to avoid getting stuck in the local optimization. The proposed algorithm does not get stuck in the local optimization with the help of the mutation operator and can find forgery areas with a precision of about 81.39% for the IMD dataset and about 81.04% for the MICC-F600 dataset.

Keywords

[1] A. Roy, R. Dixit, R. Naskar and R. S. Chakraborty, Copy-Move Forgery Detection in Digital Images—Survey
and Accuracy Estimation Metrics, In Digital Image Forensics, (2020) 27-56.
[2] A. Novoz´amsk´y and M. Sorel, ˇ Detection of Copy-Move Image Modification Using Jpeg Compression Model, Forensic Sci. Inter., (2018) 47-57.
[3] E. Amiri, Z. Roozbakhsh, S. Amiri and M.H. Asadi, Detection of Topographic Images of Keratoconus Disease
Using Machine Vision, Int. J. Eng. Sci. Appl., 4 (4) (2020) 145-50.
[4] P. M. Raju and M. S. Nair, Copy-Move Forgery Detection Using Binary Discriminant Features, J. King Saud
Univ.-Comput. Inf. Sci., (2018).
[5] B. Mahdian and S. Saic, Detection of Copy–Move Forgery Using a Method Based on Blur Moment Invariants,
Forensic Sci. Int., 171 (2-3) (2007) 180-89.
[6] I.Amerini, L. Ballan, R. Caldelli, A.D. Bimbo, L.D. Tongo and G. Serra, Copy-Move Forgery Detection and
Localization by Means of Robust Clustering with J-Linkage, Signal Process.: Image Commun., 28 ( 6 )(2013)
659-69.
[7] W. Abd, N. Bakiah, A. W. A. Wahab, M. Y. I. Idris, R. Ramli, R. Salleh, S. Shamshirband and K. R. Choo,
Copy-Move Forgery Detection: Survey, Challenges and Future Directions, J. Network Comput. Appl., 75 (2016)
259-278.
[8] J. C. Lee, Copy-Move Image Forgery Detection Based on Gabor Magnitude, J. Visual Commun. Image Represent.,
31 (2015) 320-334.
[9] B. Shivakumar and S. S. Baboo, Detection of Region Duplication Forgery in Digital Images Using Surf, Int. J.
Comput. Sci. Issues (IJCSI), 8 (4) (2011) 199.
[10] H. A. Alberry, A. A. Hegazy and G. I. Salama, A Fast Sift Based Method for Copy Move Forgery Detection,
Future Comput. Inf. J., 3 (2) (2018) 159-165.
[11] K. Liu, W. Lu, C. Lin, X. Huang, X. Liu, Y. Yeung and Y. Xue, Copy Move Forgery Detection Based on Keypoint
and Patch Match, Multimedia Tools Appl., 78 (22) (2019) 31387-31413.
[12] Y. Sun, R. Ni and Y. Zhao, Nonoverlapping Blocks Based Copy-Move Forgery Detection, Secur. Commun. Networks, 2018 (2018).
[13] E. Ardizzone, A. Bruno and G. Mazzola. Copy–Move Forgery Detection by Matching Triangles of Keypoints.
IEEE Trans. Inf. Forensics Secur., 10 (10) (2015) 2084-2094.
[14] E. A. Armas. Vega, E. G. Fern´andez, A. L. Sandoval. Orozco and L. J. Garc´ıa. Villalba, Copy-Move Forgery
Detection Technique Based on Discrete Cosine Transform Blocks Features, Neural Comput. Appl., 33 (10)
(2021) 4713-4727.
[15] A. Hilal and S. Chantaf, Uncovering Copy–Move Traces Using Principal Component Analysis, Discrete Cosine
Transform and Gabor Filter, Analog Integr. Circuits Signal Process., 96( 2) (2018) 283-91.
[16] L. Li, S. Li, H. Zhu, S.C. Chu, JF. Roddick and J.S. Pan, An Efficient Scheme for Detecting Copy-Move Forged
Images by Local Binary Patterns, J. Inf. Hiding Multim. Signal Process., 4 (1) (2013) 46-56.
[17] D. G. Lowe, Object Recognition from Local Scale-Invariant Features, Int. J. Comput. Vision, 60( 2) (2004) 91-110.
[18] G. Jin and X. Wan, An Improved Method for Sift-Based Copy–Move Forgery Detection Using Non-Maximum
Value Suppression and Optimized J-Linkage, Signal Process.: Image Commun., 57 (2017) 113-125.
[19] Y. Wang, P. Wang, J. Zhang, Z. Cui, X. Cai, W. Zhang and J. Chen, A Novel Bat Algorithm with Multiple
Strategies Coupling for Numerical Optimization, Mathematics, 7 (2) (2019) 135.
[20] M.A. Al-Betar and MA. Awadallah, Island Bat Algorithm for Optimization, Expert Sys. Appl., 107 (2018) 126-45.
[21] W.H. Bangyal, J. Ahmad, H.T. Rauf and S. Pervaiz, An Overview of Mutation Strategies in Bat Algorithm, Int.
J. Adv. Comput. Sci. Appl. (IJACSA), 9 (8) (2018) 523-34.
[22] J.W. Zhang and G.G. Wang, Image Matching Using a Bat Algorithm with Mutation, Paper presented at the
Applied Mechanics and Materials, 2012.
[23] I. Amerini, L. Ballan, R. Caldelli, A.Del. Bimbo and G. Serra, A Sift-Based Forensic Method for Copy–Move
Attack Detection and Transformation Recovery, IEEE Trans. Inf. Forensics Secur., 6(3) (2011) 1099-110.
[24] Q. Lyu, J. Luo, K. Liu, X. Yin, J. Liu and W. Lu, Copy Move Forgery Detection Based on Double Matching, J.
Visual Commun. Image Represent., 76 (2021) 103057.
[25] F. Yang, J. Li, W. Lu and J. Weng, Copy-Move Forgery Detection Based on Hybrid Features, Eng. Appl. Artif.
Intell., 59 (2017) 73-83.
[26] C. Lin, W. Lu, X. Huang, K. Liu, W. Sun, H. Lin and Z. Tan, Copy-Move Forgery Detection Using Combined
Features and Transitive Matching, Multimedia Tools Appl., 78 (21) (2019) 30081-30096.
[27] M. Emam, Q. Han and X. Niu, Pcet Based Copy-Move Forgery Detection in Images under Geometric Transforms,
Multimedia Tools Appl., 75 (18) (2016) 11513-11527.[28] E. Silva, T. Carvalho, A. Ferreira and A. Rocha, Going Deeper into Copy-Move Forgery Detection: Exploring
Image Telltales Via Multi-Scale Analysis and Voting Processes, J. Visual Commun. Image Represent., 29 (2015)
16-32.
[29] J. Deng, J. Yang, S. Weng, G. Gu and Z. Li, Copy-Move Forgery Detection Robust to Various Transformation
and Degradation Attacks, KSII Trans. Internet Inf. Syst.(TIIS) 12 (9) (2018) 4467-4486.
[30] S. Amiri, A. Mosallanejad and A. Sheikhahmadi, Medical images fusion based on equilibrium optimization and
discrete wavelet, Int. J. Nonlinear Anal. Appl., 12, (Special Issue) (2021) 1337-1354.
[31] A. Kazemi, M. E. Shiri, A. Sheikhahmadi and M. Khodamoradi, A new parallel deep learning algorithm for breast
cancer classification, Int. J. Nonlinear Anal. Appl., 12 (Special Issue) (2021) 1269-1282.
[32] E. Amiri, M. Rahmanian, S. Amiri and H. Yazdani Praee, Medical images fusion using two-stage combined model
DWT and DCT, Int. Adv. Res. Eng. J., 5 (3) (2021) 344-351.
[33] N. khaledian, F. Mardukhi, CFMT: a collaborative filtering approach based on the nonnegative matrix factorization
technique and trust relationships, J. Ambient Intell. Hum. Comput., (2021) 1-17.
Volume 12, Special Issue
December 2021
Pages 1947-1955
  • Receive Date: 24 August 2021
  • Revise Date: 19 November 2021
  • Accept Date: 04 December 2021