[1] Q.A. Abdulazeez and Z.Y. Algamal, Generalized ridge estimator shrinkage estimation based on Harris hawks optimization algorithm, Elect. J. Appl. Stat. Anal. 14(1) (2021) 254–265.
[2] E. Akdeniz Duran and F. Akdeniz, Efficiency of the modified jackknifed Liu-type estimator, Stat. Papers 53(2) (2012) 265–280.
[3] Y. Al-Taweel, Z.J. Algamal and N. Sciences, Some almost unbiased ridge regression estimators for the zero-inflated negative binomial regression model, Period. Engin. Natural Sci. 8(1) (2020) 248–255.
[4] Z.Y. Algamal, Diagnostic in poisson regression models, Elect. J. Appl. Stat. Anal. 5(2) (2012) 178–186.
[5] Z.Y. Algamal, Biased estimators in Poisson regression model in the presence of multicollinearity: A subject review, Al-Qadisiyah J. Administ. Economic Sci. 20(1) (2018) 37–43.
[6] Z.Y. Algamal, Developing a ridge estimator for the gamma regression model, J. Chemomet. 32(10) (2018).
[7] Z.Y. Algamal, A new method for choosing the biasing parameter in ridge estimator for generalized linear model, Chemomet. Intel. Laboratory Syst. 183 (2018) 96–101.
[8] Z.Y. Algamal, Shrinkage parameter selection via modified cross-validation approach for ridge regression model, Commun. Stat. Simul. Comput. 49(7) (2018) 1922–1930.
[9] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression model, Concur. Comput. Practice Exper. (2021) e6685.
[10] Z.Y. Algamal, and M.M. Alanaz, Proposed methods in estimating the ridge regression parameter in Poisson regression model, Elect. J. Appl. Stat. Anal. 11(2) (2018) 506–515.
[11] Z.Y. Algamal and Y. Asar, Liu-type estimator for the gamma regression model, Commun. Stat. Simul. Comput. 49(8) (2018) 2035–2048.
[12] Z.Y. Algamal, Shrinkage estimators for gamma regression model, Elect. J. Appl. Stat. Anal. 11(1) (2018) 253–268.
[13] Z.Y. Algamal, Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm, Iraqi J. Stat. Sci. 17(32) (2020) 37–52.
[14] A. Alkhateeb and Z.Y. Algamal, Jackknifed Liu-type estimator in Poisson regression model, J. Iran. Stat. Soc. 19(1) (2020) 21–37.
[15] N.N. Alobaidi, R.E. Shamany and Z.Y. Algamal, A New Ridge Estimator for the Negative Binomial Regression Model, Thai. Stat. 19(1) (2021) 116–125.
[16] Y. Asar and A. Genc, A new two-parameter estimator for the Poisson regression model, Iran. J. Sci. Technol. Trans. A Sci. 42(2) (2017) 793–803.
[17] F.S.M. Batah, T.V. Ramanathan and S.D. Gore, The Efficiency of Modified Jackknife and Ridge Type Regression Estimators: A Comparison, Surveys in Mathematics & its Applications, 2008.
[18] A.C. Cameron and P.K. Trivedi, Regression Analysis of Count Data, Cambridge university press, 2013.
[19] P. De Jong and G.Z. Heller, Generalized Linear Models for Insurance Data, Cambridge University Press Cambridge, 2008.
[20] D.V. Hinkley, Jackknifing in unbalanced situations, Technomet. 19(3) (1977) 285–292.
[21] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technomet. 12(1) (1970) 55–67.
[22] M. Kandemir C¸ etinkaya and S. Ka¸cıranlar, Improved two-parameter estimators for the negative binomial and Poisson regression models, J. Stat. Comput. Simul. 89(14) (2019) 2645–2660.
[23] B.G. Kibria, K. M˚ansson and G. Shukur, A simulation study of some biasing parameters for the ridge type estimation of Poisson regression, Commun. Stat. Simul. Comput. 44(4) (2015) 943–957.
[24] B.M.G. Kibria, Performance of some new ridge regression estimators, Commun. Stat. Simul. Comput. 32(2) (2003) 419–435.
[25] B.M.G. Kibria, K. M˚ansson and G. Shukur, A simulation study of some biasing parameters for the Ridge Type estimation of Poisson regression, Commun. Stat. Theory Meth. 44(4) (2015) 943–957.
[26] K. Liu, A new class of blased estimate in linear regression, Commun. Stat. Theory Meth. 22(2) (1993) 393–402.
[27] K. Liu, Using Liu-type estimator to combat collinearity, Commun. Stat. Theory Meth. 32(5) (2003) 1009–1020.
[28] A.F. Lukman, Z.Y. Algamal, B.M.G. Kibria and K. Ayinde, The KL estimator for the inverse Gaussian regression model, Concur. Comput. Practice Exper. 33(13) (2021).
[29] A.F. Lukman, I. Dawoud, B.M.G. Kibria, Z.Y. Algamal and B. Aladeitan, A new Ridge-Type estimator for the Gamma regression model, Scientif. (Cairo) 2021 5545356.
[30] K. Mansson, On ridge estimators for the negative binomial regression model, Economic Model. 29(2) (2012) 178–184.
[31] K. Mansson, Developing a Liu estimator for the negative binomial regression model: method and application, J. Stat. Comput. Simul. 83(9) (2013) 1773–1780.
[32] K. Mansson, B.G. Kibria, P. Sjolander and G. Shukur, Improved Liu estimators for the Poisson regression model, Int. J. Stat. Probab. 1(1) (2012) 2.
[33] K. M˚ansson and G. Shukur, A Poisson ridge regression estimator, Economic Model. 28(4) (2011) 1475–1481.
[34] H.S. Mohammed and Z.Y. Algamal, Shrinkage estimators for semiparametric regression model, J. Phys. Conf. Ser. 1897(1) (2021).
[35] H. Nyquist, Applications of the jackknife procedure in ridge regression, Comput. Stat. Data Anal. 6(2) (1988) 177–183.
[36] M.H. Quenouille, Notes on bias in estimation, Biomet. 43(3/4) (1956) 353–360.
[37] N.K. Rashad and Z.Y. Algamal, A New Ridge Estimator for the Poisson Regression Model, Iran. J. Sci. Technol. Trans. A: Sci. 43(6) (2019) 2921–2928.
[38] N.K. Rashad, N.M. Hammood and Z.Y. Algamal, Generalized ridge estimator in negative binomial regression model, J. Phys. Conf. Ser. 1897(1) (2021).
[39] R. Shamany, N.M. Alobaidi and Z.Y. Algamal, A new two-parameter estimator for the inverse Gaussian regressionmodel with application in chemometrics, Elect. J. Appl. Stat. Anal. 12(2) (2019) 453–464.
[40] B. Singh, Y. Chaubey and T. Dwivedi, An almost unbiased ridge estimator, Indian J. Stat. Ser. B 48(3) (1986) 342–346.
[41] J. Tukey, Bias and confidence in not quite large samples, Ann. Math. Statist. 29 (1958) 614.
[42] S. T¨urkan and G. Ozel, A new modified Jackknifed estimator for the Poisson regression model, J. Appl. Stat. 43(10) (2015) 1892–1905.
[43] S. T¨urkan and G. Ozel, A Jackknifed estimators for the Negative Binomial regression model, Commun. Stat. Simul. Comput. 47(6) (2018) 1845–1865.
[44] A. Z. Yahya, Performance of ridge estimator in inverse Gaussian regression model, Commun. Stat. Theory Meth. 48(15) (2018) 3836–3849.
[45] Yıldız, On the performance of the Jackknifed Liu-type estimator in linear regression model, Commun. Stat. Theory Meth. 47(9) (2017) 2278–2290.