[1] O.B.Shukur, and M.H. Lee, A Review of using Neural Network and Kalman Filter based on ARIMA for Wind
Speed Forecasting, Iraqi J. Stat. Sci., 16(29),(2019).
[2] T.S. Ksiksi, and L.S. Al-Blooshi, Climate change in the UAE: Modeling air temperature using ARIMA and STI
across four bio-climatic zones, F1000Research, 8(973) ,(2019)973.
[3] M. G¨o¸cken, and A. Boru, Integrating metaheuristics and ANFIS for daily mean temperature forecasting, Int. J.
Global Warming, 9(1), (2016)110-128.
[4] N.R. Babu, et al, Comparison of ANFIS and ARIMA model for weather forecasting, Indian J.Sci.Technol., 8(S2),
(2015) 70-73.
[5] P.Srikanth, D.R. Rao, and P. Vidyullatha, Comparative analysis of ANFIS, ARIMA and polynomial curve fitting
for weather forecasting, Indian J. Sci. Technol., 9(15), (2016)1-6.
[6] J.Jang, ANFIS: adaptive network-based fuzzy inference system, IEEE T. Syst. Man Cyb., 23 (3), (1993)665-685.
[7] M.Firat, and M. G¨ung¨or, River flow estimation using adaptive neuro fuzzy inference system, Math. Comput.Simul., 75(3-4), (2007) 87-96.
[8] M.Sugeno, and T. Takagi, Fuzzy identification of systems and its applications to modelling and control, Readings
Fuzzy Sets Intell. Syst., 15(1), (1993)387-403.
[9] F.Cavallaro, A Takagi-Sugeno fuzzy inference system for developing a sustainability index of biomass, Sustainability, 7(9), (2015)12359-12371.
[10] H.Liu, , H.-q. Tian, and Y.-f. Li, Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for
wind speed prediction, Appl. Energy, 98, (2012)415–424.
[11] S.Tatinati, and K.C. Veluvolu, A hybrid approach for short-term forecasting of wind speed, Sci. World J.,
2013,(2013).
[12] K.Chen, and J. Yu, Short-term wind speed prediction using an unscented Kalman filter based state-space support
vector regression approach, Appl. Energy., 113, (2014)690-705.
[13] R.J.Hyndman, and A.B. Koehler, Another look at measures of forecast accuracy, Int. J. Forecasting, 22(4), (2006)
679-688.