[1] O.B.Shukur, and M.H. Lee, A Review of using Neural Network and Kalman Filter based on ARIMA for Wind Speed Forecasting, Iraqi J. Stat. Sci., 16(29),(2019).
[2] T.S. Ksiksi, and L.S. Al-Blooshi, Climate change in the UAE: Modeling air temperature using ARIMA and STI across four bio-climatic zones, F1000Research, 8(973), (2019)973.
[3] M. G¨o¸cken, and A. Boru, Integrating metaheuristics and ANFIS for daily mean temperature forecasting, Int. J. Global Warming, 9(1), (2016)110-128.
[4] N.R. Babu, C.B.A. Babu, D.P. Reddy, and M. Gowtham, Comparison of ANFIS and ARIMA model for weather forecasting, Indian J.Sci.Technol., 8(S2), (2015) 70-73.
[5] P. Srikanth, D.R. Rao, and P. Vidyullatha, Comparative analysis of ANFIS, ARIMA and polynomial curve fitting for weather forecasting, Indian J. Sci. Technol., 9(15), (2016) 1-6.
[6] J. Jang, ANFIS: adaptive network-based fuzzy inference system, IEEE T. Syst. Man Cyb., 23 (3), (1993) 665-685.
[7] M. Firat, and M. Gungor, River flow estimation using adaptive neuro-fuzzy inference system, Math. Comput. Simul., 75(3-4), (2007) 87-96.
[8] M. Sugeno, and T. Takagi, Fuzzy identification of systems and its applications to modelling and control, Readings Fuzzy Sets Intell. Syst., 15(1), (1993)387-403.
[9] F. Cavallaro, A Takagi-Sugeno fuzzy inference system for developing a sustainability index of biomass, Sustainability, 7(9), (2015)12359-12371.
[10] H.Liu, , H.-q. Tian, and Y.-f. Li, Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction, Appl. Energy, 98, (2012)415–424.
[11] S.Tatinati, and K.C. Veluvolu, A hybrid approach for short-term forecasting of wind speed, Sci. World J., 2013,(2013).
[12] K. Chen, and J. Yu, Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach, Appl. Energy., 113, (2014)690-705.
[13] R.J. Hyndman, and A.B. Koehler, Another look at measures of forecast accuracy, Int. J. Forecasting, 22(4), (2006) 679-688.