[1] M. T. Ahmed, M. A. Khaleel, P. E. Oguntunde and M. K. Abdal-Hammed, editors, A New Version of the Exponentiated Burr X distribution, J. Phys.: Conf. Ser., 2021, IOP Publishing.
[2] F. G. Akg¨ul and B. S¸eno˘glu, Inferences for stress–strength reliability of Burr Type X distributions based on ranked set sampling, Commun. Stat.- Simul. Comput., (2020) 1-17.
[3] S. Bals, S. Van Aert, G. Van Tendeloo and D. Avila-Brande, Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range, Phys. Rev. Lett., 96(9)(2006) 096106.
[4] M. Eliwa, Z. Alhussain, E. Ahmed, M. Salah, H. Ahmed and M. El-Morshedy, Bivariate Gompertz generator of distributions: statistical properties and estimation with application to model football data, J. National Sci. Found. Sri Lanka., 48(2)(2020).
[5] J. Fan and W. Zhang, Statistical estimation in varying coefficient models, The Ann. Stat., 27(5)(1999) 1491-518.
[6] A. S. Hassan, A. M. Abd-Elfattah, M. M. Hassan, Bayesian analysis for mixture of Burr XII and Burr X distributions, Far East J. Math. Sci. , 103(6) (2018) 1031-1041.
[7] N. A. Ibrahim, M. A. Khaleel, F. Merovci, A. Kilicman and M. Shitan, Weibull Burr X distribution properties and application, Pak. J. Stat.,33(5)(2017) 315-336.
[8] T. Koopmans, Statistical estimation of simultaneous economic relations, J. Am. Stat. Assoc., 40(232)(1945) 448-466.
[9] B. Legried, E. K. Molloy, T. Warnow and S. Roch, Polynomial-time statistical estimation of species trees under gene duplication and loss. J. Comput. Biol., 28(5)(2021) 452-468.
[10] A. K. Mahto, Y. M. Tripathi and S-J. Wu, Statistical inference based on progressively type-II censored data from the Burr X distribution under progressive-stress accelerated life test, J. Stat. Comput. Simul., 91(2)(2021) 368-382.
[11] I. A. Norman and A. H. A. Abd Al-Ameer, Comparison of Classical and Bayesian methods to Estimate the shape parameter and Reliability function in Burr type X or two-parameter of exponential Rayleigh distribution under different Loss function, J. Administration Econ., 42 (119) (2019) 42-58.
[12] A. Rabie and J. Li, E-Bayesian estimation for Burr-X distribution based on generalized type-I hybrid censoring scheme, Am. J. Math. Management Sci., 39(1)(2020) 41-55.
[13] M. Ravikumar and R. Kantam, Two-step estimation in burr type X distribution, Int. J. Stat. Appl. Math., 1(4)(2016) 37-41.
[14] Z. Yang, N. Goldman and A. Friday, Maximum likelihood trees from DNA sequences: a peculiar statistical estimation problem, Syst. Biol., 44(3)(1995) 384-99.
[15] G. Yari and Z. Tondpour, The new Burr distribution and its application, Math. Sci., 11(1)(2017) 47-54.
[16] S. Zhou, Y. Chen and J. Shi, Statistical estimation and testing for variation root-cause identification of multistage manufacturing processes. IEEE Trans. Autom. Sci. Eng., 1(1)(2004) 73-83.