[1] E. Akdeniz Duran and F. Akdeniz, Efficiency of the modified jackknifed Liu-type estimator, Statist. Papers 53(2)
(2012) 265–280.
[2] M.N. Akram, M. Amin and M. Amanullah, Two-parameter estimator for the inverse Gaussian regression model,
Commun. Statist. Simul. Comput. 2020 (2020) 1–19.
[3] A. Alkhateeb and Z. Algamal, Jackknifed liu-type estimator in poisson regression model, J. Iran. Statist. Soc.
19(1) (2020) 21–37.
[4] Z.Y. Algamal, Developing a ridge estimator for the gamma regression model, J. Chemometrics 32(10) (2018).
[5] Z.Y. Algamal, A new method for choosing the biasing parameter in ridge estimator for generalized linear model,
Chemometrics Intell. Lab. Syst. 183 (2018) 96–101.
[6] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model, Commun. Statist. Theory
Methods 48(15) (2018) 3836–3849.
[7] Z.Y. Algamal, Shrinkage estimators for gamma regression model, Electron. J. Appl. Statist. Anal. 11(1) (2018)
253–268.
[8] Z.Y. Algamal, Shrinkage parameter selection via modified cross-validation approach for ridge regression model,
Commun. Statist. Simul. Comput. 49(7) (2018) 1922–1930.
[9] Z.Y. Algamal and M.R. Abonazel, Developing a Liu-type estimator in beta regression model, Concur. Comput.
Pract. Exper. 2021 (2021).
[10] Z.Y. Algamal, Performance of ridge estimator in inverse Gaussian regression model, Commun. Statist. Theory
Methods 48(15) (2018) 3836–3849.
[11] Z.Y. Algamal and M.M. Alanaz, Proposed methods in estimating the ridge regression parameter in Poisson regression model, Electron. J. Appl. Statist. Anal. 11(2) (2018) 506–15.
[12] Z.Y. Algamal and Y. Asar, Liu-type estimator for the gamma regression model, Commun. Statist. Simul. Comput.
49(8) (2018) 2035–2048.
[13] Z. Algamal, Shrinkage estimators for gamma regression model, Electron. J. Appl. Statist. Anal. 11(1) (2018)
253–268.
[14] Z. Algamal, Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm,
Iraqi J. Statist. Sci. 17(32) (2020) 37–52.
[15] Y. Al-Taweel, Z. Algamal and N. Sciences, Some almost unbiased ridge regression estimators for the zero-inflated
negative binomial regression model, Period. Engin. Natural Sci. 8(1) (2020) 248–255.
[16] J. Correa-Basurto, C. Flores-Sandoval, J. Mar´ın-Cruz, A. Rojo-Dom´ınguez, L.M. Espinoza-Fonseca and J.G.J.
Trujillo-Ferrara, Docking and quantum mechanic studies on cholinesterases and their inhibitors, Eur. J. Medicinal
Chem. 42(1) (2007) 10–19.
[17] R. Farebrother, Further results on the mean square error of ridge regression, J. Royal Statist. Soc. Ser. B 38(3)
(1976) 248–250.
[18] M.H. Gruber, The efficiency of jack-knifed and usual ridge type estimators: A comparison, Statist. Probab. Lett.
11(1) (1991) 49–51.
[19] D.V. Hinkley, Jackknifing in unbalanced situations, Technometrics 19(3) (1977) 285–292.
[20] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics
12(1) (1970) 55–67.
[21] A.E. Hoerl, R.W. Kannard and K.F. Baldwin, Ridge regression: Some simulations, Comm. Statist. Theory
Methods 4(2) (1975) 105–123.
[22] B.M.G. Kibria, Performance of some new ridge regression estimators, Commun. Statist. Simul. Comput. 32(2)
(2003) 419–435.
[23] B.M.G. Kibria and A.F. Lukman, A new ridge-type estimator for the linear regression model: simulations and
applications, Scientifica 2020 (2020).
[24] G. Kibria, K. M˚ansson and G. Shukur, Performance of some logistic ridge regression estimators, Comput. Econ.
40(4) (2012) 401–414.
[25] M. Khurana, Y.P. Chaubey and S. Chandra, Jackknifing the ridge regression estimator: A revisit, Comm. Statist.
Theory Methods 43(24) (2014) 5249–5262.
[26] F. Kurto˘glu and M.R. Ozkale, ¨ Liu estimation in generalized linear models: application on gamma distributed
response variable, Statist. Papers 57(4) (2016) 911–928.[27] K. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory Methods 22 (1993) 393–402.
[28] G. Liu and S. Piantadosi, Ridge estimation in generalized linear models and proportional hazards regressions,
Comm. Statist. Theory Methods. 46(23) (2016) 11466–11479.
[29] A.F. Lukman, Z.Y. Algamal, B.M.G. Kibria and K. Ayinde, The KL estimator for the inverse Gaussian regression
model, Concurr. Comput. Pract. Exper. 33(13) (2021).
[30] A.F. Lukman, I. Dawoud, B.M.G. Kibria, Z.Y. Algamal and B. Aladeitan, A new ridge-type estimator for the
gamma regression model, Scientifica 2021 (2021).
[31] M.J. Mackinnon and M.L. Puterman, Collinearity in generalized linear models, Commun. Statist. Theory Methods. 18(9) (1989) 3463–3472.
[32] K. M˚ansson and G. Shukur, A Poisson ridge regression estimator, Economic Modell. 28(4) (2011) 1475–1481.
[33] P. McCullagh, J.A. Nelder and P. McCullagh, Generalized Linear Models, 2nd ed. New York: Chapman and Hall
London, 1989.
[34] H.S. Mohammed and Z.Y. Algamal, Shrinkage estimators for semiparametric regression model, J. Phys. Conf.
Ser. 1897(1) (2021).
[35] F. Noeel and Z.Y. Algamal, Almost unbiased ridge estimator in the count data regression models, Electron. J.
Appl. Statist. Anal. 14(1) (2021) 44–57.
[36] H. Nyquist, Applications of the jackknife procedure in ridge regression, Comput. Statist. Data Anal. 6(2) (1988)
177–183.
[37] H. Nyquist, Restricted estimation of generalized linear models, J. Royal Statist. Soc. Ser. C 40(1) (1991) 133–141.
[38] N.K. Rashad and Z.Y. Algamal, A new ridge estimator for the poisson regression model, Iran. J. Sci. Technol.
Trans. A: Sci. 43(6) (2019) 2921–2928.
[39] N.K. Rashad, N.M. Hammood and Z.Y. Algamal, Generalized ridge estimator in negative binomial regression
model, J. Phys. Conf. Ser. 1897(1) (2021).
[40] B. Segerstedt, On ordinary ridge regression in generalized linear models, Commun. Statist. Theory Methods.
21(8) (1992) 2227–2246.
[41] M.R. Ozkale and E. Arıcan, ¨ A first-order approximated jackknifed ridge estimator in binary logistic regression,
Comput. Statist. 34(2) (2018) 683–712.
[42] R. Shamany, N.N. Alobaidi and Z.Y. Algamal, A new two-parameter estimator for the inverse Gaussian regression
model with application in chemometrics, Electron. J. Appl. Statist. Anal. 12(2) (2019) 453–464.
[43] B. Singh, Y. Chaubey and T. Dwivedi, An almost unbiased ridge estimator, Indian J. Statist. Ser. B. 13 (1986)
342–346.
[44] S. T¨urkan and G. Ozel, ¨ A new modified Jackknifed estimator for the Poisson regression model, J. Appl. Statist.
43(10) (2015) 1892–1905.
[45] N. Yıldız, On the performance of the Jackknifed Liu-type estimator in linear regression model, Commun. Statist.
Theory Methods 47(9) (2018) 2278–2290.