[1] N.A.. Aziz, Z. Ali, N.M. Nor, A. Baharum and M. Omar, Modeling multinomial logistic regression on characteristics of smokers after the smoke-free campaign in the area of Melaka, AIP Conf. Proc. 1750(1) (2016) 60020.
[2] G.C. Cawley, N.L.C. Talbot and M. Girolami, Sparse multinomial logistic regression via Bayesian l1 regularisation, Adv. Neural Inf. Process. Syst. 19 (2007) 209.
[3] A.M. El-Habil, An application on multinomial logistic regression model, Pakistan J. Statist. Oper. Res. 8(2) (2012) 271–291.
[4] S. Fr¨uhwirth-Schnatter and R. Fr¨uhwirth, Data augmentation and MCMC for binary and multinomial logit models, Statist. Modell. Regression Structures (2010) 111–132.
[5] J. Geweke, Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, Federal Reserve Bank of Minneapolis, Research Department Minneapolis, 148 (1991).
[6] P.J. Green, K. Latuszy´nski, M. Pereyra and C.P. Robert, Bayesian computation: a summary of the current state, and samples backwards and forwards, Stat. Comput., 25(4) (2015) 835–862.
[7] S. Kwon, D. Kim and S. Lee, An efficient algorithm for the non-convex penalized multinomial logistic regression, Commun. Statist. Appl. Methods 27(1) (2020) 129-–140.
[8] R.M. Neal, Slice sampling, Ann. Statist. 13(3) (2003) 705–741.
[9] C. Robert and G. Casella, A short history of Markov chain Monte Carlo: Subjective recollections from incomplete data, Statist. Sci. 26(1) (2011) 102–115.