[1] K. Alhasan and K. Abad Al-Kadim, Multi-subintervals double truncated of rayleigh distribution, The Eighth Int. Sci. Conf. Iraq Al-Khwarizmi Soc. AIP Conf. Proc. (2021).
[2] K. Alhasan and K. Abad Al-Kadim, Multi-double truncated of continuous distribution, 2nd ISCPS, AIP Conf. Proc. (2021).
[3] H. Amal and A. Mohamed, A new family of upper truncated distributions: properties and estimation, THAIJO 18(2) (2020) 196–214.
[4] M.S. Ammar and Z. Mazen, Modified Weibull Distribution, Appl. Sci. 11 (2009) 123–136.
[5] S. Dey, T. Dey and D. Kundu, Two-parameter rayleigh distribution: different methods of estimation, Amer. J. Math. Manag. Sci. 33(1) (2014).
[6] F. Galton, An examination into the registered speeds of American trotting horses, with remarks on their value as hereditary data, Proc. R. Soc. Lond. 62(379-387) (1898) 310–315.
[7] H. Iden and G. Shayma, Some estimators the parameter of Maxwell-Boltzmann distribution, Global J. Pure Appl. Math., 13(10) (2017) 7211–7227.
[8] A.S. Malik and S.P. Ahmad, Gamma Rayleigh Distribution: Properties and Application, In Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions, AIJR Publisher, 2019.
[9] E.A. Mohammad and S.F. Mohammad, [0,1] Truncated Fr´echet-Pareto distributions, IQJOSS 15(61) (2019) 229–244.
[10] M.M. Mohie, M.M. Amein and A.M. Abd El-Raheem, On mid truncated distributions and its applications, JARAM 5(2) (2013) 20–38.
[11] S. Sharma and A.J. Obaid, Mathematical modelling, analysis and design of fuzzy logic controller for the control of ventilation systems using MATLAB fuzzy logic toolbox, J. Interdiscip. Math. 23(4) (2020) 843–849.
[12] O.A. Swar, Local dependence for bivariate Weibull distributions created by Archimedean copula, Baghdad Sci. J. 18(1) (2021) 816–823.
[13] M.S. Tokmachev, Modeling of truncated probability distributions, IOP Conf. Ser. Mater. Sci. Eng. 441 (2018) 012056.
[14] L. Zaninetti and M. Ferraro, On the truncated Pareto distribution with applications, Cent. Eur. J. Phys. 6(1) (2008) 1–6.