[1] A. Alkhateeb and Z. Algamal, Jackknifed liu-type estimator in Poisson regression model, J.Iran. Stat. Soc. 19(1) (2020) 21–37.
[2] N.K. Rashad and Z.Y. Algamal, A new ridge estimator for the Poisson regression model, Iran. J. Technol. Trans. A: Sci. 43(6) (2019) 2921–2928.
[3] L.H. Vanegas and L.M. Rondon, A data transformation to deal with constant under/over-dispersion in Poisson and binomial regression models, J. Statist. Comput Simul. 90(10) (2020) 1811–1833.
[4] B. Forthmann and P. Doebler, Reliability of researcher capacity estimates and count data dispersion: A comparison of Poisson, negative binomial and conway-maxwell-poisson models, Scientometrics 126(4) (2021) 3337–3354.
[5] R.A. Francis, S.R. Geedipally, S.D. Guikema, S.S. Dhavala, D. Lord and S. LaRocca, Characterizing the performance of the Conway-Maxwell Poisson generalized linear model, Risk Anal. Int. J. 32(1) (2012) 167–183.
[6] G.M. Abdella, J. Kim, K.N. Al-Khalifa and A.M. Hamouda, Penalized Conway-maxwell-Poisson regression for modelling dispersed discrete data: The case study of motor vehicle crash frequency, Safety Sci. 120 (2019) 157–163.
[7] A. Huang, emphMean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts, J. Sagepub. Statist. Modell. 17(6) (2017) 359–380.
[8] R.W. Conway and W.L. Maxwell, A queuing model with state-dependent service rates, J. Ind. Eng. 12(2) (1962) 132–136.
[9] H. Choo-Wosoba, S.M. Levy and S. Datta, Marginal regression models for clustered count data based on zero-inflated Conway–Maxwell–Poisson distribution with applications, J. Biometrics 72(2) (2016) 606–618.
[10] A.E. Hoerl and R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics 12(1) (1970) 55–67.
[11] D. Lord, S.R. Geedipally and S.D. Guikema, Extension of the application of Conway-Maxwell-Poisson models: Analyzing traffic crash data exhibiting underdispersion, Risk Anal. 30(8) (2010) 1268–1276.
[12] D. Lord, S.D. Guikema and S.R. Geedipally, Application of the Conway-Maxwell-Poisson generalized linear model
for analyzing motor vehicle crashes, Accid Anal. Prev. 40(3) (2008) 1123–1134.
[13] M.F. Santarelli, D. Della Latta, M. Scipioni, V. Positano and L. Landini, A Conway-Maxwell-Poisson (cmp) model to address data dispersion on positron emission tomography, Comput. Biol. Med. 77 (2016) 90–101.
[14] S.B. Chatla and G. Shmueli, Efficient estimation of com–poisson regression and a generalized additive model, Comput. Statist. Data Anal. 121 (2018) 71–88.
[15] G. Shmueli, T.P. Minka, J.B. Kadane, S. Borle and P.J. Boatwright, A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution, J. R. Statist. Soc. 54(1) (2005) 127–142.
[16] S.D. Guikema and J.P. Coffelt, A flexible count data regression model for risk analysis, Risk Anal. 28(1) (2008) 213–223.
[17] B. Singh, Y. Chaubey and T. Dwivedi, An almost unbiased ridge estimator, Indian J. Statist. Series B 13 (1986) 342–346.
[18] E. Akdeniz Duran and F. Akdeniz, Efficiency of the modified jackknifed liu-type estimator, Statist. Pap. 53(2) (2012) 265–280.
[19] M.H. Gruber, The efficiency of jack-knifed and usual ridge type estimators: A comparison, Statist. Probab. Lett. 11(1) (1991) 49–51.
[20] M. Khurana, Y. P. Chaubey and S. Chandra, Jackknifing the ridge regression estimator: A revisit, Comm. Statist. Theory Methods 43 (24) (2014) 5249–5262.
[21] H. Nyquist, Applications of the jackknife procedure in ridge regression, Comput. Statist. Data Anal. 6(2) (1988) 177–183.
[22] S. Turkan and G. Ozel, A new modified jackknifed estimator for the Poisson regression model, J. Appl. Stat. 43(10) (2015) 1892–1905.
[23] N. Yildiz, On the performance of the jackknifed liu-type estimator in linear regression model, Comm. Staistt. Theory Methods (2017) 0-0.
[24] Z.Y. Algamal, Developing a ridge estimator for the gamma regression model, J. Chemometrics 32(10) (2018).
[25] Z.Y. Algamal, Biased estimators in Poisson regression model in the presence of multicollinearity: A subject review, Al-Qadisiyah J. Administrative Econ. Sci. 20(1) (2018) 37–43.
[26] B.G. Kibria, K. MĖansson and G. Shukur, A simulation study of some biasing parameters for the ridge type estimation of Poisson regression, Commun. Stat. Simul. Comput. 44(4) (2015) 943–957.
[27] K. Mansson, B.G. Kibria, P. Sjolander and G. Shukur, Improved liu estimators for the Poisson regression model, Int. J. Stat. Probab. 1(1) (2012).
[28] K. Liu, Using liu-type estimator to combat collinearity, Comm. Statist. Theory Methods 32(5) (2003) 1009–1020.
[29] D.V. Hinkley, Jackknifing in unbalanced situations, Technometrics 19(3) (1977) 285–292.
[30] B. Singh, Y. Chaubey and T. Dwivedi, An almost unbiased ridge estimator, Indian. J. Stat. Series B (1986) 342–346.
[31] F.S.M. Batah, T.V. Ramanathan and S.D. Gore, The efficiency of modified jackknife and ridge type regression estimators: A comparison, Surv. Math. Appl. 3 (2008).
[32] M.H. Quenouille, Notes on bias in estimation, Biometrika 43(3-4) (1956) 353–360.
[33] J. Tukey, Bias and confidence in not quite large samples, Ann. Math. Stat. 29 (1958) 614.
[34] B.M.G. Kibria, Performance of some new ridge regression estimators, Commun. Stat. Simul. Comput. 32(2) (2003) 419–435.
[35] A. E. Hoerl, R. W. Kannard and K. F. Baldwin, Ridge regression: Some simulations, Comm. Statist. Theory Methods 4(2) (1975) 105–123.
[36] D. Marcondes Filho and A.M.O.T. Sant’Anna, Principal component regression-based control charts for monitoring count data, Int. J. Adv. Manuf. Technol. 85(5) (2016) 1565–1574.
[37] U. Mammadova and M.R. Ozkale, ¨ Profile monitoring for count data using Poisson and Conway-Maxwell-Poisson regression-based control charts under multicollinearity problem, J. Comput. Appl. Math. 388 (2021) 113275.