[1] A.A. Akinpelu, M.E. Ali, T.O. Owolabi, M.R. Johan, R. Saidur, S.Q. Olatunji and Z. Chowdbury, A support vector regression model for the prediction of total polyaromatic hydrocarbons in soil: An artificial intelligent system for mapping environmental pollution, Neural Comput. Appl. 32(18) (2020) 14899–14908.
[2] N.A. Al-Thanoon, Q.S. Qasim and Z.Y. Algamal, Selection of tuning parameter in L1-support vector machine via. particle swarm optimization method, J. Engin. Appl. Sci. 15(1) (2019) 310–318.
[3] Z. Qasim, M. Lee and H. Ali, Improving grasshopper optimization algorithm for hyperparameters estimation and feature selection in support vector regression, Chem. Intell. Lab. Syst. 208 (2021) 104196.
[4] H. Aslani, M. Yaghoobi and M. R. Akbarzadeh, Chaotic inertia weight in black hole algorithm for function optimization, Int. Cong. Technol. Commun. Knowledge 2015.
[5] K.Y. Chen and C.H. Wang, Support vector regression with genetic algorithms in forecasting tourism demand, Tourism Manag. 28(1) (2007) 215–226.
[6] V. Cherkasskyand and Y. Ma, Selection of Meta-parameters for Support Vector Regression, Artif. Neural Networks, Springer, Berlin, Heidelberg, 2002, pp. 687–693.
[7] V. Cherkassky and Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks 17(1) (2004) 113–126.
[8] J.S. Chou and A.D. Pham, Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information, Inf. Sci. 399 (2017) 64–80.
[9] C.C. Chuang and Z.J. Lee, Hybrid robust support vector machines for regression with outliers, Appl. Soft Comput. 11(1) (2011) 64–72.
[10] M. Eskandarzadehalamdary, B. Masoumi and O. Sojodishijani, A new hybrid algorithm based on black hole optimization and bisecting k-means for cluster analysis, 22nd Iran. Conf. Electric. Engin. 2014, pp. 1075–1079.
[11] M. Farahmandian and A. Hatamlou, Solving optimization problems using black hole algorithm, J. Adv. Comput. Sci. Technol. 4(1) (2015) 68.
[12] R. Fernandez, Predicting time series with a local support vector regression machine, ACAI 99, 1999.
[13] W. Gao, X. Wang, S. Dai and D. Chen, Study on stability of high embankment slope based on black hole algorithm, Envir. Earth Sci. 75(20) (2016) 1381.
[14] A. Hatamlou, Black hole: A new heuristic optimization approach for data clustering, Inf. Sci. 222 (2013) 175–184.
[15] H. Kaneko and K. Funatsu, Fast optimization of hyperparameters for support vector regression models with highly predictive ability, Chemometrics and Intelligent Laboratory Systems, 142 (2015) 64-69.
[16] R. Laref, E. Losson, A. Sava and M. Siadat, On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications, Chem. Intell. Lab. Syst. 184 (2019) 22–27.
[17] S. Fang and X. Liu, Parameter optimization of support vector regression based on sine cosine algorithm, Expert Syst. Appl. 91 (2018) 63–77.
[18] M. Nait Amar and N. Zeraibi, Application of hybrid support vector regression artificial bee colony for prediction of MMP in CO2-EOR process, Petroleum, 6(4) (2018) 415–422.
[19] E. Pashaei, M. Ozen and N. Aydin, An application of black hole algorithm and decision tree for medical problem, IEEE 15th Int. Conf. Bioinf. Bioengin. 2015, pp. 1–6.
[20] O.S. Qasim, K.A. Abed and A.F. Qasim, Optimal parameters for nonlinear Hirota-Satsuma coupled KdV system by using hybrid firefly algorithm with modified Adomian decomposition, J. Math. Fund. Sci. 52(3) 2020 339–352.
[21] B. Sch¨olkopf, A.J. Smola, R.C. Williamson and P.L. Bartlett, New support vector algorithms, Neural Comput. 12(5) (2000) 1207–1245.
[22] A. Smola, N. Murata, B. Sch¨olkopf and K.R. M¨uller, Asymptotically optimal choice of ε-loss for support vector machines, Int. Conf. Artif. Neural Networks, 1998, pp. 105–110.
[23] D.D. Warnana, Black hole algorithm for determining model parameter in self-potential data, J. Appl. Geophys. 148 (2018) 189–200.
[24] B. Ustun, M.J. Melssen, M. Oudenhuijzen and L.M. Buydens, Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization, Anal. Chim. Acta 544(1-2) (2005) 292–305.
[25] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
[26] V. Vapnik, S.E. Golowich and A. Smola, Support vector method for function approximation, regression estimation, and signal processing, Adv. Neural Inf. Process. Syst. (1997) 281–287.
[27] S. Xu, B. Lu, M. Baldea, T.F. Edgar and M. Nixon, An improved variable selection method for support vector regression in NIR spectral modeling, J. Process Cont. 67 (2018) 83–93.
[28] Y. P. Zhao and J. G. Sun, Robust truncated support vector regression, Expert Syst. Appl. 37(7) (2010) 5126–5133.