[1] D. Maltoni, D. Maio, A.K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition, Springer Science & Business Media, 2009.
[2] A. K. Jain, A.A. Ross and K. Nandakumar, Introduction to Biometrics, Springer Science & Business Media, 2011.
[3] K. Syazana-Itqan, A.R. Syafeeza, N.M. Saad, N.A. Hamid and W. Saad, A review of finger-vein biometrics identification approaches, Indian J. Sci. Technol. 9(32) (2016) 1–9.
[4] S. Varastehpour, H. Sharifzadeh, I. Ardekani and H. Sarrafzadeh, Human Biometric Traits: A Systematic Review Focusing on Vascular Patterns, 2020.
[5] A.N. Hoshyar and R. Sulaiman, Review on finger vein authentication system by applying neural network, Int. Symp. Inf. Technol. 2010, pp. 1020–1023.
[6] E. Ting and M.Z. Ibrahim, A review of finger vein recognition system, J. Telecommun. Electron. Comput. Eng. 10(1–9) (2018) 167–171.
[7] N. Mukahar and B. A. Rosdi, Interval-valued fuzzy sets k-nearest neighbors classifier for finger vein recognition, J. Phys. Conf. Ser. 890(1) (2017) 12069.
[8] S. Shazeeda and B.A. Rosdi, Nearest centroid neighbor-based sparse representation classification for finger vein
recognition, IEEE Access 7 (2018) 5874–5885.
[9] S. Shazeeda and B.A. Rosdi, Finger vein recognition using mutual sparse representation classification, IET Biometrics 8(1) (2019) 49–58.
[10] D. Zhao, H. Ma, Z. Yang, J. Li and W. Tian, Finger vein recognition based on lightweight CNN combining center loss and dynamic regularization, Infrared Phys. Technol. 105 (2020) 103221.
[11] B.A. Rosdi, N. Mukahar and N.T. Han, Finger Vein Recognition Using Principle Component Analysis and Adaptive k-Nearest Centroid Neighbor Classifier, Int. J. Integr. Eng. 13(1) (2021) 177–187.
[12] M.S.M. Asaari, S.A. Suandi and B.A. Rosdi, Fusion of band-limited phase-only correlation and width centroid
contour distance for finger-based biometrics, Expert Syst. Appl. 41(7) (2014) 3367–3382.
[13] I. Takawale, T. Garud, S. Ingale, N. Udgaonkar, N. Date and S. Jadhav, Finger vein authentication system using convolutional neural network, Int. J. Res. Appl. Sci. Eng. Technol. 8(1) 676–682.
[14] K.A. Akintoye, M.R.M. Shafry and H. Abdullah, A novel approach for finger vein pattern enhancement using Gabor and Canny edge detector, Int. J. Comput. Appl. 157(2) (2017).
[15] J. Ma, X. Fan, S.X. Yang, X. Zhang and X. Zhu, Contrast limited adaptive histogram equalization based fusion for underwater image enhancement, Preprints, (2017) 1-27.
[16] N. Marturi, Vision and Visual Servoing for Nanomanipulation and nano-characterization in Scanning Electron Microscope, Universite de Franche-Comt´e, 2013.
[17] T.S. Beng and B.A. Rosdi, Finger-vein identification using pattern map and principal component analysis, IEEE
Int. Conf. Signal Image Process. Appl. 2011, pp. 530–534.
[18] M. Kaufmann, J. Han and J. Pei, Data Mining Concepts and Techniques, Cyber Secur. Technol. 6(2) (2012).
[19] W. Liu, W. Li, L. Sun, L. Zhang and P. Chen, Finger vein recognition based on deep learning, 12th IEEE Conf. Indust. Electron. Appl. 2017, pp. 205–210.
[20] Y. LeCun, K. Kavukcuoglu and C. Farabet, Convolutional networks and applications in vision, Proc. 2010 IEEE Int. Symp. Circuits Syst. 2010, pp. 253–256.
[21] N. Ketkar and E. Santana, Deep Learning with Python, vol. 1. Springer, 2017.
[22] A.K. Santra and C.J. Christy, Genetic algorithm and confusion matrix for document clustering, Int. J. Comput. Sci. 9(1) (2012) 322.
[23] A.E. Hassanien, R. Bhatnagar and A. Darwish, Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, vol. 912. Springer Nature, 2020.