[1] A.S. Abd-Alzhra and M.S.H. Al-Tamimi, Lossy image compression using hybrid deep learning autoencoder based on k-mean clustering, Design Engin. (2021) 7848–7861.
[2] M.S.H. Al-Tamimi, Combining convolutional neural networks and slantlet transform for an effective image retrieval scheme, Int. J. Electr. Comput. Eng. 9(5) (2019) 4382–4395.
[3] M.S.H. Al-Tamimi, I.A. Abdulmunem and S.S. Sulaiman, Improved merging multi convolutional neural networks framework of image indexing and retrieval, Int. J. Adv. Sci. Tech. 29(8) (2020) 1884–1901.
[4] M. Dasgupta, O. Bandyopadhyay and S. Chatterji, Automated helmet detection for multiple motorcycle riders using CNN, IEEE Conf. Inf. Commun. Technol. Allahabad, India, 2019, pp. 1–4.
[5] G. Deore, R. Bodhula, V. Udpikar and V. More, Study of masked face detection approach in video analytics, 2016 Conference on Advances in Signal Processing (CASP), Pune, (2016) 196–200.
[6] P. Deval, A. Chaudhari, R. Wagh, A. Auti and M. Parma, CNN-based face mask detection integrated with digital hospital facilities, Int. J. Adv. Res. Sci., Commun. Tech. 4(2) (2021) 492–497.
[7] M.S. Ejaz, M.R. Islam, M. Sifatullah and A. Sarker, Implementation of principle component analysis on masked and non-masked face recognition, IEEE 1st Int. Conf. Adv. Sci. Engin. Robotics Technol. 2019, pp. 1–5.
[8] R. Girshick, Fast R-CNN, Proc. IEEE Int. Conf. Comput. Vision 2015, pp. 1440–1448.
[9] K. He, G. Gkioxari, P. Doll´ar and R. Girshick, Mask R-CNN, Proc. IEEE Int. Conf. Comput. Vision 2017, pp. 2961–2969.
[10] W. Hongtao and Y. Xi, Object detection method based on improved one-stage detector, 5th Int. Conf. Smart Grid Electric. Autom. (ICSGEA), IEEE, 2020, pp. 209–212.
[11] L. Jiang, J. Chen, H. Todo, Z. Tang, S. Liu and Y. Li, Application of a fast RCNN based on upper and lower layers in face recognition, Comput. Intell. Neurosci. 2021 (2021).
[12] H. Jiang and E. Learned-Miller, Face detection with the faster R-CNN, 12th IEEE Int. Conf. Automatic Face Gesture Recogn. (FG 2017), IEEE, 2017, pp. 650–657.
[13] K. Lin, H. Zhao, J. Lv, C. Li, X. Liu, R. Chen and R. Zhao, Face detection and segmentation based on improved mask R-CNN, Discrete Dyn. Nature Soc. 2020 (2020).
[14] K. Lin, H. Zhao, J. Lv, J. Zhan, X. Liu, R. Chen, C. Li and Z. Huang, Face detection and segmentation with generalized intersection over union based on mask R-CNN, International Conference on Brain Inspired Cognitive Systems, Springer, Cham. (2019) 106–116.
[15] T. Meenpal, A. Balakrishnan and A. Verma, Facial mask detection using semantic segmentation, IEEE 4th International Conference on Computing, Communication and Security, (2019) 1–5.
[16] N.A. Mohamed and M.S.H. Al-Tamimi, Image fusion techniques: A review, Int. J. Psych.Rehabil. 24(10) (2020).
[17] N.A. Mohamed and M.S.H. Al-Tamimi, Image fusion using a convolutional neural network, Solid State Technol. 63(6) (2020).
[18] R. Qian, Q. Liu, Y. Yue, F. Coenen and B. Zhang, Road surface traffic sign detection with hybrid region proposal and fast R-CNN, 12th Int. Conf. Natural Comput. Fuzzy Syst. Knowledge Discov. IEEE, 2016, pp. 555–559.
[19] B. Qin and D. Li, Identifying facemask-wearing condition using image super-resolution with classification network to prevent COVID-19, Sensors 20(18) (2020) 5236.
[20] J. Redmon, S. Divvala, R.B. Girshick and A. Farhadi, You only look once: Unified, real-time object detection, In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, (2016) 779–788.
[21] S. Ren, K. He, R. Girshick, X. Zhang and J. Sun, Object detection networks on convolutional feature maps, IEEE Trans. Pattern Anal. Machine Intell., 39(7) (2016) 1476–1481.
[22] M. Rezaei, E. Ravanbakhsh, E. Namjoo and M. Haghighat, Assessing the effect of image quality on SSD and faster R-CNN networks for face detection, 27th Iran. Conf. Electric. Engin. IEEE, 2019, pp. 1589–1594.
[23] J.R. Sella Veluswami, S. Prakash and N. Parekh, Face mask detection using SSDNET and lightweight custom CNN, Proc. Int. Conf. IoT Based Control Networks and Intelligent Systems-ICICNIS 2021, (2021).
[24] S. Shivaprasad, M.D. Sai, U. Vignasahithi, G. Keerthi, S. Rishi and P. Jayanth, Real time CNN based detection of face mask using mobilenetv2 to prevent Covid-19, Ann. Roman. Soc. Cell Bio. 25(6) (2021) 12958–12969.
[25] Z. Tian, C. Shen, H. Chen and T. He, Fcos: Fully convolutional one-stage object detection, Proc. IEEE/CVF Int. Conf. Comput. Vision 2019, pp. 9627–9636.
[26] K. Wang, Y. Dong, H. Bai, Y. Zhao and K. Hu, Use fast R-CNN and cascade structure for face detection, Visual Commun. Image Process. (VCIP), IEEE, (2016) 1–4.
[27] Q. Wang and J. Zheng, Research on face detection based on fast R-CNN, Recent Developments in Intelligent Computing, Communication and Devices, Springer, Singapore, (2019) 79–85.
[28] W. Wu, Y. Yin, X. Wang and D. Xu, Face detection with different scales based on faster R-CNN, IEEE Trans. Cyber. 49(11) (2018) 4017–4028.
[29] C. Xing, X. Liang and R. Yang, Compact one-stage object detection network, IEEE 8th Int. Conf. Comput. Sci.
Network Technol. (ICCSNT), IEEE, (2020) 115–118.
[30] G. Yang, W. Feng, J. Jin, Q. Lei, X. Li, G. Gui and W. Wang, Face mask recognition system with YOLOV5 based on image recognition, IEEE 6th Int. Conf. Comput. Commun. (ICCC), IEEE, 2020, pp. 1398–1404.
[31] C. Zhu, Y. Zheng, K. Luu M. Savvides, CMS-R-CNN: contextual multi-scale region-based CNN for unconstrained face detection, Deep Learn. Biometrics, Springer, Cham. (2017) 57–79.