[1] M. Farooq-i-Azam and M.N. Ayyaz, Location and position estimation in wireless sensor networks, Curr. Status Future Trends, CRC Press, 2016.
[2] S. Kharbech, I. Dayoub, M. Zwingelstein-Colin and E.P. Simon, On classifiers for blind feature-based automatic modulation classification over multiple-input–multiple-output channels, IET Commun. 10(7) (2016) 790–795.
[3] O.A. Dobre, A. Abdi, Y. Bar-Ness and W. Su, Survey of automatic modulation classification techniques: Classical approaches and new trends, IET Commun. 1(2)(2007) 137–156.
[4] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd and S. Webster, An investigation of machine learning based prediction systems, J. Syst. Software 53(1) (2000) 23–29.
[5] M. O’Neill, L. Vanneschi, S. Gustafson and W. Banzhaf, Open issues in genetic programming, Genet. Program. Evolvable Mach. 11(3-4)(2010) 339–363.
[6] J. Kobashigawa, H.S. Youn, M. Iskander and Z. Yun, Comparative study of genetic programming vs. neural networks for the classification of buried objects, IEEE Antennas Propag. Soci. Int. Symp. 2009, pp. 1–4.
[7] M. Brezocnik, M. Kovacic and L. Gusel, Comparison between genetic algorithm and genetic programming approach for modeling the stress distribution, Materials Manuf. Processes, 20(3) (2005) 497–508.
[8] H. Guo, L.B. Jack and A.K. Nandi, Feature generation using genetic programming with application to fault classification, IEEE Trans. Syst. Man. Cybern. Part B (Cybern.) 35(1) (2005) 89–99.
[9] N.M. Razali and J. Geraghty, Genetic algorithm performance with different selection strategies in solving TSP, Proc. World Congress Eng. Hong Kong, Int. Assoc. Eng. 2(1) (2011) 1–6.
[10] D. Rist`e, M.P. Da Silva, C.A. Ryan, A.W. Cross, A.D. C´orcoles, J.A. Smolin, J.M. Gambetta, J.M. Chow and B.R. Johnson, Demonstration of quantum advantage in machine learning, npj Quantum Inf. 3(1) (2017) 1–5.
[11] Z. Laboudi and S. Chikhi, Comparison of genetic algorithm and quantum genetic algorithm, Int. Arab J. Inf. Technol. 9(3) (2012) 243–249.
[12] L. Wang, F. Tang and H. Wu, Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation, Appl. Math. Comput. 171(2) (2005) 1141–1156.
[13] S.Y. Kuo, Y.H. Chou and C.Y. Chen, Quantum-inspired algorithm for cyber-physical visual surveillance deployment systems, Comput. Networks 117 (2017) 5–18.
[14] A.O. Pittenger, An Introduction to Quantum Computing Algorithms, Springer Sci. Bus. Media, 2012.
[15] J. L. Xu, W. Su and M. Zhou, Likelihood-ratio approaches to automatic modulation classification, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(4)-(2010) 455–469.
[16] W. Su, Feature space analysis of modulation classification using very high-order statistics, IEEE Commun. Lett. 17(9) (2013) 1688–1691.
[17] F. Hameed, O.A. Dobre and D.C. Popescu, On the likelihood-based approach to modulation classification, IEEE Trans. Wirel. Commun. 8(12) (2009) 5884–5892.
[18] A.K. Nandi and E.E. Azzouz, Algorithms for automatic modulation recognition of communication signals, IEEE Trans. Commun. 46(4) (1998), 431–436.
[19] F. Wang and X. Wang, Fast and robust modulation classification via Kolmogorov-Smirnov test, IEEE Trans. Commun. 58(8) (2010) 2324–2332.
[20] K.C. Ho, W. Prokopiw and Y. Chan, Modulation identification of digital signals by the wavelet transform, IEE Proc.-Radar Sonar Navig. 147(4(2000) 169–176.
[21] L. Hong and K.C. Ho, Identification of digital modulation types using the wavelet transform, IEEE Mil. Commun. Conf. Proc. 1999, pp. 427-431.
[22] Z. Fucai, H. Yihua and H. Shiqi, Classification using wavelet packet decomposition and support vector machine for digital modulations, J. Syst. Eng. Electron. 19(5) (2008) 914–918.
[23] P. Li, F. Wang and Z. Wang, Algorithm for modulation recognition based on high-order cumulants and subspace decomposition, Int. Conf. Signal Process. 2006.
[24] M.R. Mirarab and M.A.Sobhani, Robust modulation classification for PSK/QAM/ASK using higher-order cumulants, Int. Conf. Inf. Commun. Signal Process. 2007, pp. 1–4.
[25] L. Shen, S. Li, C. Song and F. Chen, Automatic modulation classification of MPSK signals using high order cumulants, Int. Conf. Signal Process. 1 (2006).
[26] N. An, B. Li and M. Huang, Modulation classification of higher order MQAM signals using mixed-order moments and Fisher criterion, Int. Conf. Comput. Autom. Eng.(ICCAE), 3 (2010), pp. 150-153.
[27] M.W. Aslam, Z. Zhu and A. K. Nandi, Automatic digital modulation classification using genetic programming with K-nearest neighbor, Mil. Commun. Conf., 2010, pp. 1731–1736.
[28] Z. Shan, Z. Xin and W. Ying, Improved modulation classification of MPSK signals based on high order cumulants, Int. Conf. Future Compu. Commun. 2 V2-444.
[29] M. Zhang, V.B. Ciesielski and P.Andreae, A domain-independent window approach to multiclass object detection using genetic programming, EURASIP J. Adv. Signal Process. 8 (2003) 1–19.
[30] L. Zhang, L. B. Jack and A. K. Nandi, Extending genetic programming for multi-class classification by combining k-nearest neighbor, Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 5(2005) v-349.