[1] N. Blomqvist, On a measure of dependence between two random variables, Ann. Math. Statist. 21 (1950) 593–600.
[2] G.M. D’ESTE, A Morgenstern-type bivariate gamma distribution, Biometrika. 68(1) (1981) 339–340
[3] P. Deheuvels, A Kolmogorov-Smirnov type test for independence and multivariate samples, Rev. Roumaine Math.
Pures Appl. 26 (1981a) 213–226.
[4] D.J.G. Farlie, The performance of some correlation coefficients for a general bivariate distribution, Biometrika
47 (1960) 307–323.
[? ] L. Herbach, Introduction, Gumbel Model, In: de Oliveira J.T. (eds) Statistical Extremes and Applications.
NATO ASI Series (Series C: Mathematical and Physical Sciences), vol 131. Springer, Dordrecht. 1984.
[5] W. Hoeffding, A Non-Parametric Test of Independence, Ann. Math. Statist. 19(4) (1948) 546–557.
[6] M. Hollander and D.A. Wolfe, Nonparametric Statistical Methods, Wiley, New York, 1973.
[7] W.H. Kruskal, Ordinal measures of association, J. Amer. Statist. Assoc. 53 (1958) 814–861.
[8] R.B. Nelsen, J.J. Quesada Molina and J.A. Rodr´ıguez Lallena, Bivariate copulas with cubic sections, J. Nonparametr Statist. 7 (1997) 205–220.
[9] R.B. Nelsen, An Introduction to Copulas, Springer Verlag, Berlin, Heidelberg, New York, 2007.
[10] J.J. Quesada-Molina and J.A. Rodr´ıguez-Lallena, Bivariate copulas with quadratic sections, J. Nonparametric
Statist. 5(4) (1995) 323–337.
[11] J.A. Rodr´ıguez-Lallena and M. Ubeda-Flores, ´ Multivariate copulas with quadratic sections in one variable, Metrika
72(3) (2010).
[12] A. Sklar, Random variables, joint distribution functions, and copulas, Kybernetika 9 (1973) 449–460.
[13] S. Sriboonchitta and V. Kreinovich, Why are FGM copulas successful: a simple explanation, Comput. Sci. Commons 3 (2017).
[14] B. Schweizer, E.F. Wolff, On nonparametric measures of dependence for random variables, Ann. Statist. 9 (1981)
879–885.
[15] Sh. Sharma and A.J. Obaid, Mathematical modelling, analysis and design of fuzzy logic controller for the control
of ventilation systems using MATLAB fuzzy logic toolbox, J. Interdiscip. Math. 23(4) (2020) 843–849.