[1] S.A. Abdelghani, T.M. Rosenthal and D.P. Morin, Surface electrocardiogram predictors of sudden cardiac arrest, Ochsner J. 16(3) (2016) 280-–289.
[2] J.S. Arteaga-Falconi, H. Al Osman and A. El Saddik, ECG authentication for mobile devices, IEEE Trans. Instrum. Meas. 65(3) (2016) 591–600.
[3] M.M. Bassiouni, E.S.A. El-Dahshan, W. Khalefa and A.M. Salem, Intelligent hybrid approaches for human ECG signals identification, Signal, Image Video Process. 12(5) (2018) 941-–949.
[4] N. Belgacem, R. Fournier, A. Nait-Ali and F. Bereksi-Reguig, A novel biometric authentication approach using ECG and EMG signals, J. Med. Eng. Technol. 39(4) (2015) 226—238.
[5] M. Boussaa, I. Atouf, M. Atibi and A. Bennis, ECG signals classification using MFCC coefficients and ANN classifier, Proc. 2016 Int. Conf. Electr. Inf. Technol. ICEIT, (2016) 480-–484.
[6] R. Bousseljot, D. Kreiseler and A. Schnabel, Nutzung der EKG-Signaldatenbank CARDIODAT der PTB uber das Internet, De Gruyter, Biomedizinische Technik, 40(s1) (1995) 317–318.
[7] D. Bzdok, M. Krzywinski and N. Altman, Points of significance: Machine learning: Supervised methods, Nat. Methods 15(1) (2018) 5-–6.
[8] C. Camara, P. Peris-Lopez and J.E. Tapiador, Human identification using compressed ECG signals, J. Med. Syst. 39(11) (2015).
[9] C. Camara, P. Peris-Lopez, J.E. Tapiador and G. Suarez-Tangil, Non-invasive multi-modal human identification system combining ECG, GSR, and airflow biosignals, J. Med. Biol. Eng. 35(6) (2015) 735-–748.
[10] S. Chandra’, A. Sharma and G.K. Singh, A comparative analysis of performance of several wavelet-based ECG data compression methodologies, Irbm 42(4) (2021) 227—244.
[11] G. Cicceri, F. De Vita, D. Bruneo, G. Merlino and A. Puliafito, A deep learning approach for pressure ulcer prevention using wearable computing, Human-centric Comput. Info. Sci. 10(1) (2020) 1–21.
[12] G.D. Clifford, AF classification from a short single lead ECG recording: The physionet/computing in cardiology challenge 2017, Comput. Cardiol. 44 (2017) 1-–4.
[13] M. Cluitmans, D.H. Brooks, R. MacLeod, O. D¨ossel, M.S. Guillem, P.M. Van Dam, J. Svehlikova, B. He, J. Sapp, L. Wang and L. Bear, Validation and opportunities of electrocardiographic imaging: From technical achievements to clinical applications, Front. Physiol. 9 (2018) 1305.
[14] C. Cortes, P. Haffner and M. Mohri, A Machine Learning Framework for Spoken-Dialog Classification, Springer
Handbooks, 2008.
[15] S. Dalal and V.P. Vishwakarma, GA-based KELM optimization for ECG classification, Proc. Comput. Sci. 167 (2020) 580—588.
[16] P.H.B. de Melo, A brief review on electrocardiogram analysis and classification techniques with machine learning approaches, U. Porto J. Eng. 7(4) (2021) 153—162.
[17] X. Dong, W. Si, W. Huang, ECG-based identity recognition via deterministic learning, Biotechnology & Biotechnological Equipment, 32(3) (2018) 769-–777.
[18] R. Donida Labati, E. Mu˜noz, V. Piuri, R. Sassi and F. Scotti, Deep-ECG: convolutional neural networks for ECG biometric recognition, Pattern Recognit. Lett. 126 (2019) 78-–85.
[19] J. Dubochet, J. Frank and R. Henderson, The Nobel prize in chemistry 2017, Nobel Media AB, 2017.
[20] F.A. Elhaj, N. Salim, A.R. Harris, T.T. Swee and T. Ahmed, Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals, Comput. Methods Programs Biomed. 127 (2016) 52-–63.
[21] A. Fratini, M. Sansone, P. Bifulco and M. Cesarelli, Individual identification via electrocardiogram analysis, Biomed. Eng. 14(1) (2015) 1-–23.
[22] S. Gutta and Q. Cheng, Joint feature extraction and classifier design for ECG-based biometric recognition, IEEE J. Biomed. Heal. Informatics, 20(2) (2015) 460—468.
[23] M. Hammad, Y. Liu and K. Wang, Multimodal biometric authentication systems using convolution neural network based on the different level fusion of ECG and fingerprint, IEEE Access 7 (2019) 25527-–25542.
[24] H. He and Y. Tan, Automatic pattern recognition of ECG signals using entropy-based adaptive dimensionality reduction and clustering, Appl. Soft Comput. J. 55 (2017) 238-–252.
[25] S. Hong, C. Wang and Z. Fu, CardioID: learning to identification from electrocardiogram data, Neurocomputing,
412 (2020) 11-–18.
[26] S. Hong, Y. Zhou, J. Shang, C. Xiao and J. Sun, Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review, Comput. Biol. Med. 122 (2020) 103801.
[27] T.M. Hossain, J. Wataada, M. Hermana and I.A. Aziz, Supervised machine learning in electrifies classification: A rough set theory approach, J. Phys. Conf. Ser. 1529(5) (2020).
[28] S.H. Jambukia, V.K. Dabhi and H.B. Prajapati, Classification of ECG signals using machine learning techniques: A survey, Conf. Proceeding - 2015 Int. Conf. Adv. Comput. Eng. Appl. ICACEA, 2015, pp. 714—721.
[29] R. Krishan, Feature extraction of human electrocardiogram signal using machine learning, Department of Computer Science, Mata Sundri University Girls College, Mansa, Punjab (2021) 153–161.
[30] S. Krishnan and Y. Athavale, Trends in biomedical signal feature extraction, Biomed. Signal Process. Control, 43 (2018) 41-–63.
[31] F. Liu, An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection, J. Med. Imaging Heal. Informatics, 8(7) (2018) 1368-–1373.
[32] H.M. Lynn, S.B. Pan and P. Kim, A deep bidirectional GRU network model for biometric electrocardiogram classification based on recurrent neural networks, IEEE Access, 7 (2019) 145395—145405.
[33] N.J. Majaj and D.G. Pelli, Deep learning-using machine learning to study biological vision, J. Vis. 18(13) (2018) 1-–13.
[34] L. Marsanova, R. Smısek, A. Nemcova, L. Smital and M. Vıtek, Brno university of technology ECG signal database with annotations of P wave (BUT PDB), Res. Square, (2021).
[35] A. Matsuyama and M. Jonkman, The application of wavelet and feature vectors to ECG signals, Australasian Phys. Eng. Sci. Med. 29(1) (2006) 13–17.
[36] A. Minchol´e, J. Camps, A. Lyon and B. Rodr´ıguez, Machine learning in the electrocardiogram, J. Electrocardiol. 57 (2019) 61—64.
[37] G. Moody, A new method for detecting atrial fibrillation using R-R intervals, Comput. Cardiol. 1983 (1983) 227–230.
[38] G.B. Moody and R.G. Mark, The impact of the MIT-BIH arrhythmia database, IEEE Eng. Med. Biol. Mag. 20(3) (2001) 45-–50.
[39] J.B. Muhlestein, Smartphone ECG for evaluation of STEMI: Results of the ST LEUIS Pilot Study, J. Electroc. 48 (2015) 249—259.
[40] Y. Nakano, E.A. Rashed, T. Nakane, I. Laakso and A. Hirata, ECG localization method based on volume conductor model and Kalman filtering, Sensors, 21(13) (2021) 1-–18.
[41] S.K. Nayak, A. Bit, A. Dey, B. Mohapatra and K. Pal, A review on the nonlinear dynamical system analysis of electrocardiogram signal, J. Healthc. Eng. 2018 (2018).
[42] I. Odinaka, P.H. Lai, A.D. Kaplan, J.A. O’Sullivan, E.J. Sirevaag and J.W. Rohrbaugh, ECG biometric recognition: A comparative analysis, IEEE Trans. Inf. Forensics Secur. 7(6) (2012) 1812-–1824.
[43] A. Pal, A.K. Gautam and N. Singh, Evaluation of bioelectric signals for human recognition, Procedia Comput. Sci. 48 (2015) 746—752.
[44] P. Parvathy, K. Subramaniam, G.K.D.P. Venkatesan, P. Karthikaikumar, J. Varghese and T. Jayasankar, Development of hand gesture recognition system using machine learning, J. Ambient Intell. Humaniz. Comput. 12(6) (2021) 6793—6800.
[45] P.A. Pontes, R.O. Chaves, R.C. Castro, E.F.D. Souza, M.C. Seruffo and C.R. Frances, Educational software applied in teaching electrocardiogram: A systematic review, Biomed Res. Int. 2018 (2018).
[46] M. Regouid, M. Touahria, M. Benouis and A. Costen, Multimodal biometric system for ECG, ear and iris recognition based on local descriptors, Multimedia Tools Appl. 78(16) (2019) 22509–22535.
[47] C.K. Roopa and B.S.A. Harish, Survey on various machine learning approaches for ECG analysis, Int. J. Comput. Appl. 163(9) (2017) 25-–33.
[48] C.K. Roopa and B.S. Harish, Automated ECG analysis for localizing thrombus in culprit artery using rule-based information fuzzy network, Int. J. Interact. Multimed. Artif. Intell. 6(1) (2020) 16–25.
[49] S.M. Salerno, P.C. Alguire and H.S. Waxman, Competency in interpretation of 12-lead electrocardiograms: A summary and appraisal of published evidence, Ann. Intern. Med. 138(9) (2003) 751–760.
[50] R. Salloum and C.-C.J. Kuo, Ecg-based biometrics using recurrent neural networks, IEEE Int. Conf. Acoust. Speech, Signal Process, 2017, pp. 2062—2066.
[51] A.K. Sangaiah, M. Arumugam and G. Bin Bian, An intelligent learning approach for improving ECG signal classification and arrhythmia analysis, Artif. Intell. Med. 103 (2020) 101788.
[52] M. Sansone, R. Fusco, A. Pepino and C. Sansone, Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: A review, J. Healthc. Eng. 4 (2013) 465-–504.
[53] Y. Shahriari, R. Fidler, M.M. Pelter, Y. Bai, A. Villaroman and X. Hu, Electrocardiogram signal quality assessment based on structural image similarity metric, IEEE Trans. Biomed. Eng. 65(4) (2018) 748-–753.
[54] A.I. Siam, Biosignal classification for human identification based on convolutional neural networks, Int. J. Commun. Syst. 34(7) (2021).
[55] R. Srivastva, A. Singh and Y.N. Singh, PlexNet: A fast and robust ECG biometric system for human recognition,
Inf. Sci. 558 (2021) 208—228.
[56] R. Tan and M. Perkowski, Toward improving electrocardiogram (ECG) biometric verification using mobile sensors:
A two-stage classifier approach, Sensors 17(2) (2017).
[57] M.M. Tantawi, K. Revett, A.B. Salem and M.F. Tolba, A wavelet feature extraction method for electrocardiogram (ECG)-based biometric recognition, Signal, Image Video Process. 9(6) (2015) 1271-–1280.
[58] M. Usama, Unsupervised machine learning for networking: Techniques, applications, and research challenges, IEEE Access 7 (2019) 65579—65615.
[59] S. Vluymans, Multi-label learning, Stud. Comput. Intell. 807 (2019) 189-–218.
[60] L. Wieclaw, Y. Khoma, P. Falat, D. Sabodashko and V. Herasymenko, Biometrie identification from raw ECG signal using deep learning techniques, Proc. 2017 IEEE 9th Int. Conf. Intell. Data Acquis. Adv. Comput. Syst.Technol. Appl. IDAACS, 2017, pp. 129-–133.
[61] S.C. Wu, P.L. Hung and A.L. Swindlehurst, ECG biometric recognition: unlinkability, irreversibility, and security, IEEE IoT J. 8(1) (2021) 487—500.
[62] Y. Xin, Machine learning and deep learning methods for cybersecurity, IEEE Access 6 (2018) 35365—35381.
[63] F. Yan, Deep learning and its application to CV and NLP, University of Surrey, 2016.
[64] X.L. Yang, G.Z. Liu, Y.H. Tong, H. Yan, Z. Xu, Q. Chen and S.H. Tan, The history, hotspots, and trends of electrocardiogram, Journal of geriatric cardiology: JGC, 12 (2015) 448.
[65] Y. Zhang, R. Gravina, H. Lu, M. Villari and G. Fortino, PEA: Parallel electrocardiogram-based authentication for smart healthcare systems, J. Netw. Comput. Appl. 117 (2018) 10—16.
[66] L. Zhang, J. Tan, D. Han and H. Zhu, From machine learning to deep learning: progress in machine intelligence for rational drug discovery, Drug Discov. Today, 22(11) (2017) 1680—1685.
[67] C. Zhang, T.I.A.N. Yang-Meng and W.A.N.G. Hong-Wei, Review of ECG signal identification research, DEStech Trans. Comput. Sci. Eng. (2016).
[68] Y. Zhang, Z. Zhao, Y. Deng, X. Zhang and Y. Zhang, Human identification driven by deep CNN and transfer learning based on multiview feature representations of ECG, Biomed. Signal Process. Cont. 68 (2021) 102689.
[69] Q. Zhang and D. Zhou, Deep arm/ear-ECG image learning for highly wearable biometric human identification, Ann. Biomed. Eng. 46(1) (2018) 122-–134.
[70] Q. Zhang, D. Zhou and X. Zeng, HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications, IEEE Access 5 (2017) 11805—11816.
[71] S. Zokaee and K. Faez, Human identification based on ECG and palmprint, Int. J. Electr. Comput. Eng. 2(2) (2012).