[1] D.A. Abdullah, Objective flow-shop scheduling using PSO algorithm, Diyala J. Pure Sci. 1 (2013) 140-–153.
[2] O. Adelaiye, A. Ajibola and S. Faki, Evaluating advanced persistent threats mitigation effects: A review, Int. J. Inf. Secur. Sci. 7(4) (2018) 159—171.
[3] D. Ahfock and G.J. McLachlan, Semi-supervised learning of classifiers from a statistical perspective: A brief review, arXiv, (2021) 1-–25.
[4] A. Aleroud and L. Zhou, Phishing environments, techniques, and countermeasures: A survey, Comput. Secur. 68 (2017) 160—196.
[5] A.K. Al Hwaitat, S. Manaseer and R.M.H. Al-Sayyed, A survey of digital forensic methods under advanced persistent threat in fog computing environment, J. Theor. Appl. Inf. Technol. 97(18) (2019) 4934—4954.
[6] S. Al Salami, J. Baek, K. Salah and E. Damiani, Lightweight encryption for smart home, Proc. - 2016 11th Int. Conf. Availability, Reliab. Secur. ARES (2016) 382-–388.
[7] A. Alshamrani, S. Myneni, A. Chowdhary and D. Huang, A survey on advanced persistent threats: Techniques, solutions, challenges, and research opportunities, IEEE Commun. Surv. Tutorials 21(2) (2019) 1851—1877.
[8] G. Austin, Grading National Cybersecurity, Springer Handbooks, 2018.
[9] M. Auty, Anatomy of an advanced persistent threat, Netw. Secur. 2015(4) (2015) 13-–16.
[10] H. Bari, Protecting an Enterprise Network through the Deployment of Honeypot, Bangladesh University, Post Graduate Thesis, 2021.
[11] M.J. Baxter, A review of supervised and unsupervised pattern recognition in archaeometry, Archaeometry 48(4) (2006) 671-–694.
[12] A. Berady, V.V.T. Tong, G. Guette, C. Bidan and G. Carat, Modeling the operational phases of APT campaigns, Int. Conf. Comput. Sci. Comput. Intell. 2019, pp. 96–101.
[13] G. Brogi and V.V.T. Tong, TerminAPTor: Highlighting advanced persistent threats through information flow tracking, 8th IFIP Int. Conf. New Technol. Mobil. Secur. NTMS, 2016, pp. 1-–6.
[14] A.A. Cardenas, P.K. Manadhata and S.P. Rajan, Big data analytics for security, IEEE Secur. Privacy 11 (2013) 74–76.
[15] J. Chen, C. Su, K.H. Yeh and M. Yung, Special issue on advanced persistent threat, Futur. Gener. Comput. Syst. 79 (2018) 243-–246.
[16] C. C¸ ınar, M. Alkan, M. D¨orterler, I.A. Do˘gru, A study on advanced persistent threat, 3rd Int. Conf. Comput. Sci. Eng. (UBMK), 2018, pp. 116—121.
[17] N. De, Advanced Persistent Threats, 2015.
[18] B. Dimitrios, APT Methods for Passive and Active Portfolio Management, Msc Thesis in Banking and Financial Management, University of Piraeus, 2002.
[19] O. El Aissaoui, Y.E.A. El Madani, L. Oughdir and Y. El Allioui, Combining supervised and unsupervised machine learning algorithms to predict the learners’ learning styles, Procedia Comput. Sci. 148 (2019) 87-–96.
[20] E. Etuh, F.S. Bakpo and E.A. H, Social media network attacks and their preventive mechanisms: A review, CoRR (2021) 59—74.[21] N. Falliere, L.O. Murchu and E. Chien, W32. Stuxnet dossier: Symantec security response, Symantec Secur. Response, Version 1.4, (2011) 1—69.
[22] H. Geng, G. Geng, X. Gao and J. Ma, Dynamic defense strategy against advanced persistent threat with insiders, Trans. Nonferrous Met. Soc. China 5(3) (2015) 113-–118.
[23] I. Ghafir, M. Hammoudeh, V. Prenosil, L. Han, R. Hegarty, K. Rabie and F.J. Aparicio-Navarro, Detection of advanced persistent threat using machine-learning correlation analysis, Future Gen. Comput. Syst. 89 (2018) 349–359.
[24] P. Giura and W. Wang, A context-based detection framework for advanced persistent threats, Proc. 2012 ASE Int. Conf. Cyber Secur. CyberSecurity, 2012, pp. 69—74.
[25] W. Han, J. Xue, Y. Wang, F. Zhang and X. Gao, APTMalInsight: Identify and cognize APT malware based on system call information and ontology knowledge framework, Inf. Sci. 546 (2021) 633—664.
[26] M.M.H. Henchiri and S. Wani, Innovative architectural framework design for an effective machine learning based APT detection, Int. J. Digital Inf. Wireless Commun. 11(1) (2021) 12—22.
[27] M. Hund, ASEAN plus three: Towards a new age of pan-East Asian regionalism? A skeptic’s appraisal, Pacific Rev. 3(16) (2013) 383-–417.
[28] S. Hussain, M. Bin Ahmad and S.S.U. Ghouri, Advance persistent threat–A systematic review of literature and meta-analysis of threat vectors, Adv. Intell. Syst. Comput. 1158 (2021) 161-–178.
[29] C. Janiesch, P. Zschech and K. Heinrich, Machine learning and deep learning, Electron. Mark. 31(3) (2021) 685—695.
[30] I. Jeun, Y. Lee and D. Won, A practical study on advanced persistent threats, Commun. Comput. Inf. Sci. 339 (2012) 144-–152.
[31] W. Jiang, J. Chen, X. Ding, J. Wu, J. He and G. Wang, Review summary generation in online systems: frameworks for supervised and unsupervised scenarios, ACM Trans. Web 15(3) (2021) 1-–33.
[32] J.H. Joloudari, M. Haderbadi, A. Mashmool, M. Ghasemigol, S.S. Band and A. Mosavi, Early detection of the advanced persistent threat attack using performance analysis of deep learning, IEEE Access 8 (2020) 186125-–186137.
[33] A. Khalid, A. Zainal, M.A. Maarof and F.A. Ghaleb, Advanced persistent threat detection: A survey, 3rd Int. Cyber Resilience Conf. (CRC), IEEE, 2021, pp. 1–6.
[34] M.B. Khan, Advanced persistent threat: Detection and defense, arXiv, (2020).
[35] K. Krombholz, H. Hobel, M. Huber and E. Weippl, Advanced social engineering attacks, J. Inf. Secur. Appl. 22 (2015) 113-–122.
[36] A. Lemay, J. Calvet, F. Menet and J.M. Fernandez, Survey of publicly available reports on advanced persistent threat actors, Comput. Secur. 72 (2018) 26—59.
[37] M. Li, W. Huang, Y. Wang, W. Fan and J. Li, The study of APT attack stage model, IEEE/ACIS 15th Int. Conf. Comput. Inf. Sci. ICIS 2016, Proc. 2016, pp. 1—5.
[38] P. Li, X. Yang, Q. Xiong, J. Wen and Y.Y. Tang, Defending against the advanced persistent threat: An optimal control approach, Secur. Commun. Networks, 2018 (2018).
[39] S. Li, Q. Zhang, X. Wu, W. Han and Z. Tian, Attribution classification method of APT malware in IoT using machine learning techniques, Secur. Commun. Networks, 2021 (2021).
[40] R.P. Lippmann, R.K. Cunningham, D.J. Fried, I. Graf, K.R. Kendall, S.E. Webster and M.A. Zissman, Results of the DARPA 1998 offline intrusion detection evaluation, MIT Lincoln Laboratory, (1999).
[41] P. Mahadevan, Cybercrime threats during the COVID-19 pandemic, The Global Initiative Against Transnational Organized Crime, (2020).
[42] B.I.D. Messaoud, K. Guennoun, M. Wahbi and M. Sadik, Advanced persistent threat: New analysis driven by life cycle phases and their challenges, 2016 Int. Conf. Adv. Commun. Syst. Inf. Secur. ACOSIS 2016 - Proc. 2017, pp. 1–6.
[43] N.A.S. Mirza, H. Abbas, F.A. Khan and J. Al Muhtadi, Anticipating advanced persistent threat (APT) countermeasures using collaborative security mechanisms, Proc. - 2014 Int. Symp. Biometrics Secur. Technol. ISBAST 2014, (2015) 129—132.
[44] M. Nour, The UNSW-NB15 Dataset, UNSW Canberra, 2021.
[45] V. Prenosil and I. Ghafir, Advanced persistent threat attack detection: An overview, Int. J. Adv. Comput. Netwo UBMK 2018 - 3rd Int. Conf. Comput. Sci. Eng. Its Secur. 4(4) (2014).
[46] S. Quintero-Bonilla and A.M. del Rey, A new proposal on the advanced persistent threat: A survey, Appl. Sci. 10(11) (2020).
[47] M. Rakhi and R. Patel, A review on detecting APT malware infections based on traffic analysis and DNS, Int. J. Trend Res. Dev. 2(5) (2015) 149—153.
[48] B. Sabir, F. Ullah, M.A. Babar and R. Gaire, Machine learning for detecting data exfiltration, ACM Comput. Surv. 54(3) (2021) 1-–32.
[49] S.C. Satapathy, K.S. Raju, J.K. Mandal and V. Bhateja, Proceedings of the Second International Conference on Computer and Communication Technologies: IC3T 2015, Springer Link, 2016.
[50] S. Sibi Chakkaravarthy, D. Sangeetha and V. Vaidehi, A survey on malware analysis and mitigation techniques, Comput. Sci. Rev. 32 (2019) 1—23.
[51] M.A. Siddiqi, A. Mugheri and K. Oad, Advance persistent threat defense techniques: A review, pics J. 1(2) (2016) 53-–65.
[52] B. Stojanovi´c, K. Hofer-Schmitz and U. Kleb, APT datasets and attack modeling for automated detection methods: A review, Comput. Secur. 92 (2020) 101734.
[53] T.N. Sun, C. Teodorov and L. Le Roux, Operational design for advanced persistent threats, Proc. - 23rd ACM/IEEE Int. Conf. Model Driven Eng. Lang. Syst. Model. 2020 - Companion Proc., (2020) 362—371.
[54] P.S. Suryateja, Threats and vulnerabilities of cloud computing: A review, Int. J. Comput. Sci. Eng. 6(3) (2018) 297-–302.
[55] Y. Tanaka, M. Akiyama and A. Goto, Analysis of malware download sites by focusing on time series variation of malware, J. Comput. Sci. 22 (2017) 301—313.
[56] C. Tankard, Advanced persistent threats and how to monitor and deter them, Netw. Secur. 2011(8) (2011) 16-–19.
[57] M.J. Turcotte, A.D. Kent and C. Hash, Unified host and network data set, In Data Science for Cyber-Security, (2019) 1–22.
[58] M. Ussath, D. Jaeger, F. Cheng and C. Meinel, Advanced persistent threats: Behind the scenes, In 2016 Ann. Conf. Info. Sci. Syst. (CISS), IEEE, (2016) 181–186.
[59] R. Wagner, M. Fredrikson and D. Garlan, An advanced persistent threat exemplar, CARNEGIE-MELLON UNIV. PITTSBURGH PA PITTSBURGH United States, (2017).
[60] X. Wang, K. Zheng, X. Niu, B. Wu and C. Wu, Detection of command and control in advanced persistent threat based on independent access, 2016 IEEE Int. Conf. Commun. ICC 2016, (2016).
[61] G. Wangen, The role of malware in reported cyber espionage: A review of the impact and mechanism, Info. 6(2) (2015) 183-–211.
[62] K. Xing, A. Li, R. Jiang and Y. Jia, A review of APT attack detection methods and defense strategies, Proc. -2020 IEEE 5th Int. Conf. Data Sci. Cyberspace, DSC 2020, (2020) 67—70.
[63] C.D. Xuan, M.H. Dao and H.D. Nguyen, APT attack detection based on flow network analysis techniques using deep learning, J. Intell. Fuzzy Syst. 39(3) (2020) 4785-–4801.
[64] L.X. Yang, K. Huang, X. Yang, Y. Zhang, Y. Xiang and Y.Y. Tang, Defense against advanced persistent threat through data backup and recovery, IEEE Trans. Netw. Sci. Eng. 8(3) (2021) 2001—2013.
[65] Z.S.B. Zainudin, A Case Study Of Advanced Persistent Threats on Financial Institutions in Malaysia, MSc thesis, International Islamic University Malaysia, 2017.
[66] Z.S. Zainudin and N.N.A. Molok, Advanced persistent threats awareness and readiness: A case study in Malaysian financial institutions, Proc. 2018 Cyber Resil. Conf. CRC 2018, (2018) 1—3.
[67] R. Zhang, Y. Huo, J. Liu and F. Weng, Constructing APT attack scenarios based on intrusion kill chain and fuzzy clustering, Secur. Commun. Networks, 2017 (2017).
[68] G. Zhao, K. Xu, L. Xu and B. Wu, Detecting APT malware infections based on malicious DNS and traffic analysis, IEEE Access 3 (2015) 1132-–1142.
[69] Z. Zulkefli, M. Mahinderjit-Singh and N. Malim, Advanced persistent threat mitigation using multi level security access control framework, Lecture Notes in Computer Science, 2015.
[71] UNIBS, “UNIBS,” 2011. http://netweb.ing.unibs.it/ ntw/tools/traces/.
[76] CIC-IDS2018, “CIC-IDS2018,” 2018. https://www.unb.ca/cic/datasets/ids-2018.html.