[1] R.P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications,
Springer, New York, 2009.
[2] S. Alizadeh and F. Moradlou, Strong convergence theorems for m-generalized hybrid mappings in Hilbert spaces,
Topol. Methods Nonlinear Anal. 46 (2015), 315–328.
[3] S. Alizadeh and F. Moradlou, A strong convergence theorem for equilibrium problems and generalized hybrid
mappings, Mediterr. J. Math. 13 (2016), 379–390.
[4] S. Alizadeh and F. Moradlou, New hybrid method for equilibrium problems and relatively nonexpansive mappings
in Banach spaces, Int. J. Nonlinear Anal. Appl. 9 (2018), no. 1, 147–159.
[5] Ch. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer, London, 2009.
[6] A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math. 22 (1975), 81–86.
[7] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker,
New York, 1984.
[8] T. Ibaraki and W. Takahashi, A new projection and convergence theorems for the projections in Banach spaces,
J. Approx. Theory, 149 (2007), 1–14.
[9] T. Ibaraki and W. Takahashi, Block iterative methods for finite family of generalized nonexpansive mappings in
Banach spaces, Numer. Funct. Anal. Optim. 29 (2008), 362–375.
[10] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 40 (1974), 147–150.
[11] Z. Jouymandi and F. Moradlou, Extragradient methods for solving equilibrium problems, variational inequalities
and fixed point problems, Numer. Funct. Anal. Optim., 38 (2017), 1391–1409.
[12] Z. Jouymandi and F. Moradlou, Retraction algorithms for solving variational inequalities, pseudomonotone equilibrium problems and fixed point problems in Banach spaces, Numer. Algor. 78 (2018), 1153–1182.
[13] Z. Jouymandi and F. Moradlou, J-variational inequalities and zeroes of a family of maximal monotone operators
by sunny generalized nonexpansive retraction, Comp. Appl. Math. 37 (2018), 5358–5374.
[14] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J.
Optim. 13 (2002), 938–945.
[15] C. Klin-eam, S. Suantai and W. Takahashi, Strong convergence theorems by monoton hybrid method for a family
generalized nonexpansive mappings in Banach spaces, Taiwanese J. Math. 16 (2012), no. 6, 1971–1989.
[16] M. Liu, CQ method for generalized mixed equilibrium problem and fixed point problem of infinite family of quasiφ-asymptotically nonexpansive mappings in Banach spaces, Acta Math. Appl. Sin. 30 (2014), no. 4, 931–942.
[17] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.[18] C. Martinez-Yanes and H.K. Xu, Strong convergence of CQ method fixed point biteration processes, Nonlinear
Anal. 64 (2006), 2400–2411.
[19] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372–379.
[20] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems to common fixed points of families of
nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal. 8 (2007), 11–34.
[21] X. Qin and Y. Su, Strong convergence of monotone hybrid method for fixed point iteration processes, J. Syst. Sci.
Complexity, 21 (2008), 474–482.
[22] S. Reich, A weak convergence theorem for the alternating method with Bregman distance, in: A. G. Kartsatos
(Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New
York, (1996), pp. 313–318.
[23] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings,
J. Optim. Theory Appl. 118 (2003), 417–428.
[24] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohoma Publishers, Yokohoma, 2009.
[25] W. Takahashi and J.-C. Yao, weak convergence theorems for generalized hybrid mappings in Banach spaces, J.
Nonlinear Anal. Optim. 2 (2011), no. 1, 147–158.
[26] W. Takahashi, N.-C. Wong and J.-C. Yao, Nonlinear ergodic theorem for positively homogeneous nonexpansive
mappings in Banach spaces, Numer. Funct. Anal. Optim. 35 (2014), no. 1, 85–98.