New results on fourth-order Hankel determinants for convex functions related to the sine function

Document Type : Research Paper


1 Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

2 Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq


In this paper, we give an upper bound for the fourth Hankel determinant $H_4 (1)$ for a new class $\mathcal{S}^{\#}_{\mathcal{C}}$ associated with the sine function.


[1] S.A. Al-Ameedee, W.G. Atshan and F.A. Al-Maamori, Second Hankel determinant for certain subclasses of biunivalent functions, J. Phys.: Conf. Ser. 1664 (2020) 012044.
[2] S.A. Al-Ameedee, W. G. Atshan and F.A. Al-Maamori, Coefficients estimates of bi-univalent functions defined
by new subclass function, J. Phys.: Conf. Ser. 1530 (2020) 012105.
[3] M. Arif, L. Rani, M. Raza, and P. Zaprawa, Fourth Hankel determinant for the family of functions with bounded
turning, Bulletin of the Korean Math. Soc. 55(6) (2018) 1703–1711.
[4] W.G. Atshan, I.A.R. Rahman and A.A. Lupas, Some results of new subclasses for bi-univalent functions using
quasi-subordination, Symmetry 13(9) (2021) 1653.
[5] W.G. Atshan, S. Yalcin and R.A. Hadi, Coefficient estimates for special subclasses of k-fold symmetric bi-univalent
functions, Math. Appl. 9(2) (2020) 83–90.
[6] K.O. Babalola, On H3(1) Hankel determinant for some clastions, Y.J. Cho, J.K. Kim and S.S. Dragomir (eds.),
Univ. Ilorin, 6 (2010) 1–7.[7] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett.
26(1) (2013) 103–107.
[8] D. Bansal, S. Maharana and J.K. Prajapat, Third order Hankel determinant for certain univalent functions, J.
Korean Math. Soc. 52(6) (2015) 1139–1148.
[9] N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius problems for starlike functions, Math. Soc. 45(1)
(2019) 213–232.
[10] M. Fekete and G. Szeg¨o, Eine Bemerkung ¨uber ungerade schlichte Funktionen, J. London Math. Soc. 1(2)
[11] S. Islam, M.G. Khan, B. Ahmad, M. Arif and R. Chinram, Qextension of starlike functions subordinated with a
trigonometric sine function, Math. 8(10) (2020) 1676.
[12] A. Janteng, S. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part,
J. Inequal. Pure Appl. Math. 7(2) (2006).
[13] S. Janteng, A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal.
13(1) (2007) 619–625.
[14] M.G. Khan, B. Ahmad, J. Sokol, Z. Muhammad, W.K. Mashwani, R. Chinram and P. Petchkaew, Coefficient
problems in a class of functions with bounded turning associated with sine function, Eur. J. Pure Appl. Math.
14(1) (2021) 53–64.
[15] W. Koepf, On the Fekete-Szeg¨o problem for close-to convex functions, Proc. Amer. Math. Soc. 101 (1987) 89–95.
[16] W. Koepf, On the Fekete- Szeg¨o problem for close-to –convex functions II, Arch. Math. 49(5) (1987) 420–433.
[17] S.K. Lee, K. Khatter and V. Ravichandran, Radius of starlikeness for classes of analytic functions, Bull. Malays.
Math. Sci. Soc. 43(6) (2020) 4469–4493.
[18] S.K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent
functions, J. Inequal. Appl. 2013(1) (2013).
[19] R.J. Libera and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc.
American Math. Soc. 87(2) (1983) 251–257.
[20] S. Mahmood, H.M. Srivastava, N. Khan, Q.Z. Ahmad, B. Khan and I. Ali, Upper bound of the third Hankel
determinant for a subclass of q-starlike functions, Symmetry 11(3) (2019) 347.
[21] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, CRC Press, 2000.
[22] G. Murugusundaramoorthy and T. Bulboacˇa, Hankel determinant for new subclasses of analytic functions related
to a shell shaped region, Math. 8(6) (2020) 1041.
[23] J.W. Noonan and D.K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans.
Amer. Math. Soc. 223(2) (1976) 337–346.
[24] C. Pommerenke, Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and
Ruprecht, 1975.
[25] I.A.R. Rahman, W.G. Atshan and G.I. Oros, New concept on fourth Hankel determinant of a certain subclass of
analytic functions, Afr. Mat. 33(7) (2022) 1–15.
[26] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. 353(6)
(2015) 505–510.
[27] M. Raza and S.N. Malik, Upper bound of the third Hankel determinant for aclass of analytic functions related
with lemniscate of Bernoulli, J. Inequal. Appl. 2013(1) (2013).
[28] L. Shi, I. Ali, M. Arif, N.E. Cho, S. Hussain and H. Kan, Astudy of third Hankel determinant problem for certain
subfamilies of analytic functions involving cardioid domain, Math. 7(5) (2019) 418.
[29] L. Shi, H.M. Srivastava, M. Arif, S. Hussan and H. Khan, An investigation of the third Hankel determinant
problem for certain subfamilies of univalent functions involving the exponential function, Symmetry 11(5) (2019)
[30] D.K. Thomas and S. Abdul Halim, Retracted article: Toeplitz matrices whose elements are the coefficients of
starlike and close-to convex functions, Bull. Malays. Math. Sci. Soc. 40(4) (2017) 1781–1790.
[31] S. Yalcin, W.G. Atshan and H.Z. Hassan, Coefficients assessment for certain subclasses of bi-univalent functions
related with quasi- subordination, Pub. Inst. Math. 108(122) (2020) 155–162.
[32] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14(1) (2017).
[33] P. Zaprawa, M. Obradovic and N. Tuneski, Third Hankel determinant for univalent starlike functions, Rev. R.
Acad. Cienc. Exactas F`ıs. Nat. 115(2) (2021) 1–6.
[34] H.Y. Zhang, H. Tang and L.N. Ma, Upper bound of third Hankel determinant for a class of analytic functions,
Pure and Appl. Math. 33(2) (2017) 211–220.
Volume 12, Special Issue
December 2021
Pages 2339-2352
  • Receive Date: 05 October 2021
  • Revise Date: 12 November 2021
  • Accept Date: 13 December 2021