[1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.
[2] M.H. Annaby and Z.S. Mansour, q-Fractional calculus and equations, Springer Science+Business Media, New
York, 2012.
[3] R.O. Ayinla and T.O. Opoola, The Fekete Szeg¨o functional and second Hankel determinant for a certain subclass
of analytic functions, Appl. Math. 10 (2019), 1071–1078.
[4] E. Deniz, M. Kamali and S. Korkmaz, A certain subclass of bi-univalent functions associated with Bell numbers
and q-Srivastava Attiya operator, AIMS Math. 5 (2020), 7259—7271.
[5] O.A. Fadipe-Joseph, W.T. Ademosu and G. Murugusundaramoorthy, Coefficient bounds for a new class of univalent functions involving Sˇalˇagean operator and the modified sigmoid function, Int. J. Nonlinear Anal. Appl. 9
(2018), 59–69.
[6] M.H. Golmohamadi, S. Najafzadeh and M.R. Foroutan, q-Analogue of Liu-Srivastava operator on meromorphic
functions based on subordination, Int. J. Nonlinear Anal. Appl. 11 (2020), 219–228.
[7] A.W. Goodman, Univalent functions vol. I, Mariner Publishing Company Inc, Tampa, Florida, 1983.
[8] F.H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edin. 46 (1908), 64–72.
[9] F.H. Jackson, On q-difference, Amer. J. Math. 32 (1910), 305–314.
[10] A.S. Juma, M.S. Abdulhussain and S.N. Al-khafaji, Certain subclass of p-valent meromorphic Bazileviˇc functions
defined by fractional q-calculus operators, Int. J. Nonlinear Anal. Appl. 9 (2018), 223–230.
[11] A. Junod, Hankel determinants and orthogonal polynomials, Expo. Math. 21 (2003), 63–74.
[12] V. Kac and P. Cheung, Quantum calculus, Springer, New York, 2002.
[13] J.W. Layman, The Hankel transform and some of its properties, J. Integer Seq. 4 (2001), 1–11.
[14] A.O. Lasode and T.O. Opoola, On a generalized class of bi-univalent functions defined by subordination and
q-derivative operator, Open J. Math. Anal. 5 (2021), 46–52.
[15] A.O. Lasode and T.O. Opoola, Fekete-Szeg¨o estimates and second Hankel determinant for a generalized subfamily
of analytic functions defined by q-differential operator, Gulf J. Math. 11 (2021), no. 2, 36–43.
[16] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
[17] R.J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math.
Soc. 85 (1982), 225–230.
[18] R.J. Libera and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc.
Amer. Math. Soc. 87 (1983), 251–257.
[19] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Complex
Anal., International Press, 1992, p. 157-–169.
[20] E.P. Mazi and T.O. Opoola,A newly defined subclass of bi-univalent functions satisfying subordinate conditions,
Mathematica 84 (2019), 146–155.
[21] K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum.
Math. Pures. Et. Appl. 28 (1983), 731–739.
[22] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, Proc. Lond. Math. Soc. 41
(1966), 111–122.
[23] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108–112.
[24] S. Salehian and A. Motamednezhad, New subclasses of meromorphic bi-univalent functions by associated with
subordinate, Int. J. Nonlinear Anal. Appl. 12 (2021), 61–74.
[25] H.M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J.
Egyptian Math. Soc. 23 (2015), 242–246.