[1] B. Abebe, A discrete Lindely distribution with applications in biological sciences biometrics and biostatistics,
Biomet. Biostatist. Int. J. 7 (2018), no. 1, 48–52.
[2] Z. Ahmed and B. Iqpal, Generalized flexible Weibull extension distribution, Circ. Comput. Sci. 2 (2017), no. 4,
68–75.
[3] G.R. Aryal and C.P. Tsokos, Transmuted Weibull distribution: A generalization of the Weibull probability distribution, Eur. J. Pure Appl. Math. 4 (2011), no. 2, 89–102.
[4] M. Bebbington, C.D. Lai and R. Zitikis, A flexible Weibull extension, Reliab. Engin. Syst. Safety 92 (2007),
719–726.
[5] S. Chakraborty and D. Chakraborty, A new discrete probability distribution with integer support on (−∞, ∞),
Commun. Statist. Theory Method. 45 (2016), no. 2, 492–505.
[6] M. El-Morshedy, M.S. Eliwa and H. Nagy, A new two-parameter exponentiated discrete Lindley distribution:
properties, estimation and applications, J. Appl. Statist. 47 (2020), no. 2, 354–375.
[7] A. Flaih, H. Elsalloukh, E. Mendi and M. Milanova, The exponetiated inverted Weibull distribution, Appl. Math.
Inf. Sci. 6 (2012), no. 2, 167–171.
[8] B. Gnedenko and I. Ushakov, Probabilistic reliability engineering, New York: Wiley, 1995.[9] E. G´omez-D´eniz & E. Calder´ın-Ojeda,The discrete lindley distribution: Properties and applications, J. Statist.
Comput. Simul. 81 (2011), no. 11, 1405–1416.
[10] E. G´omez-D´eniz and E. Calder´ın Ojeda, The compound DGL/Erlang distribution in the collective risk model,
Revist. Methods Cuantt. Para´ la econom ´ la y la empresa, 16 (2013), 121–142.
[11] R.D. Gupta and D. Kundu, A new class of weighted exponential distribution, Statist. 43 (2009), 621–634.
[12] S. Hassan, M. Bakouch, A. Jazi and S. Nadarajah, A new discrete Distribution, Statist. 48 (2014), no. 1, 200–240.
[13] K.C. Kapur and L.R. Lamberson, Reliability in engineering design, John Wiley and Sons, Inc., New York, 1977.
[14] H. Krishna and P. Singh Pundir, Discrete Burr and discrete Pareto distributions, Statist. Meth. 6 (2009), no. 2,
177–188.
[15] S. Kotz and M. Pensky, The stress-strength model and its generalization: Theory and application, World Scientific,
2003.
[16] A. Lai and M.H. Alamatsaz, A discrete inverse Weibull distribution and estimation of its parameters, Statist.
Meth. 7 (2010), no. 2, 121–132.
[17] J.F. Lawless,Statistical models and methods for lifetime data, John Wiley and Sons, Inc., New York, 1982.
[18] A. Mahdavi, D. Kundu, A new method for generating distributions with an application to exponential distribution,
Commun. Statist. Theory Method. 46 (2015), no. 13, 6543–6557.
[19] B.A. Maguire, E. Pearson and A. Wynn, The time intervals between industrial accidents, Biometrica 39 (1952),
no. 1/2, 168–180.
[20] M.O. Mohamed, Inference for reliability and stress-strength for geometric distribution, Sylwan 159 (2015), no. 2,
281–289.
[21] M.O. Mohamed, Estimation of R for geometric distribution under lower record values, J. Appl. Res. Technol. 18
(2020), no. 6, 368–375.
[22] B. Munindra, R.S. Kirshna and J. Junali, A study on two parameters discrete quasi Lindely distribution and its
derived distribution, Int. J. Math. Arch. 6 (2015), no. 12, 149–156.
[23] V. Nekoukhou and H. Bidram, Exponential-discrete generalized exponential distribution: A new compound model,
J. Statist. Theory Appl. 15 (2016), no. 2, 169.
[24] M. Nassar, A. Alzaatreh, M. Mead and O. Abo-Kasem, Alpha power Weibull Distribution: Properties and Applications, Commun. Statist. Theory Method. 46 (2017), no. 20, 10236–10252.
[25] B.A. Para and T.R. Jan, Discretization of Burr-Type III distribution, J. Reliab. Statist. Stud. 7 (2014), no. 2,
87–94.
[26] B.A. Para and T.R. Jan, On discrete three parameter Burr type XII and discrete Lomax distributions and their
applications to model count data from medical science, Biomet. Biostatist. Int. J. 4 (2016), no. 2.
[27] B. A. Para and T. R. Jan, Discrete Inverse Weibull Minimax Distribution: Properties and Applications, J. Statist.
Appl. Prob. 6 (2017), no. 1, 205–218.
[28] M. Pal, M.M. Ali and J. Woo, Exponentiated Weibull distribution, Statistica 66 (2006), no. 2, 139–147.
[29] D. Roy and R.P. Gupta, Classifications of discrete lives, Micro Electron. Reliab. 32 (1992), 1459–1473.
[30] D. Roy, Reliability measures in the discrete bivariate set up and related characterization results for a bivariate
geometric distribution, Multivar. Anal. 46 (1993), 362–373.
[31] D. Roy, The discrete normal distribution, Commun. Statist. Theory Method. 32 (2003), no. 10, 1871–1883.
[32] D. Roy, Discrete Rayleigh distribution, IEEE Trans. Reliab. 53 (2004), no. 2, 255–260.
[33] M. Shafaei Nooghabi, G.R. Mohtashami Borzadaran and A. Hamid Rezaei Roknabadi, Discrete modified Weibull,
METRON, 69 (2011), 207.
[34] S.K. Sinha, Reliability and life testing, Wiley Eastern Limited, New Delhi, 1986.[35] W. Barreto-Souza, A.L. de Morais and M. Gauss Cordeiro, The Weibull-geometric distribution, J. Statist. Comput.
Simul. 81 (2011), no. 5, 645–657.