[1] M. Abdellaoui, H. Bleichrodt and C. Paraschiv, Loss aversion under prospect theory: A parameter-free measurement, Manag. Sci. 53(10) (2007) 1659-–1674.[2] M. Allais, Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’ecole
americaine, Econometrica 21(4) (1953) 503-–546.
[3] T.R. Anderson, K.B. Hollingsworth and L.B. Inman, The fixed weighting nature of a cross-evaluation model, J.
Produc. Anal. 18(1) (2002) 249-–255.
[4] R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale efficiencies in data
envelopment analysis, Manag. Sci. 30 (1984) 1078—1092.
[5] O. Berman, N. Sanajian and J.M. Wang, Location choice and risk attitude of a decision maker, Omega 66 (2017)
170—181.
[6] H. Bleichrodt, U. Schmidt and H. Zank, Additive utility in prospect theory, Manag. Sci. 55(5) (2009) 863—873.
[7] E. Borgonovo, V. Cappelli, F. Maccheroni and M. Marinacci, Risk analysis and decision theory: A bridge, Eur.
J. Oper. Res. 264(1) (2018) 280-–293.
[8] A. Boussofiane, R.G. Dyson and E. Thanassoulis, Applied data envelopment analysis, Eur. J. Oper. Res. 52(1)
(1991) 1—15.
[9] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res.
2(3) (1978) 429-–444.
[10] D.K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units, J. Oper. Res. Soc.
53(3) (2002) 314-–323.
[11] J.R. Doyle and R.H. Green, Efficiency and cross-efficiency in DEA: Derivations, meanings and uses, J. Oper.
Res. Soc. 45(5) (1994) 567—578.
[12] J.R. Doyle and R.H. Green, Cross-evaluation in DEA: Improving discrimination among DMUs, INFOR: Info.
Syst. Operat. Res. 33(3) (1995) 205-–222.
[13] D. Ellsberg, Risk, ambiguity and the savage axioms, Quart. J. Econ. 75(4) (1961) 643—669.
[14] T. Ertay and D. Ruan, Data envelopment analysis based decision model for optimal operator allocation in CMS,
Eur. J. Oper. Res. 164(3) (2005) 800-–810.
[15] M. Falagario, F. Sciancalepore, N. Costantino and R. Pietroforte, Using a DEA-cross efficiency approach in public
procurement tenders, Eur. J. Operat. Res. 218(2) (2012) 523-–529.
[16] R.H. Green, J.R. Doyle and W.D. Cook, Preference voting and project ranking using DEA and cross-evaluation,
European J. Oper. Res. 90 (1996) 461—472.
[17] J. Haddadnia and O.R. Seryasat, Classing images using words package model and fuzzy weighting of the words of
the vocabulary, J. Appl. Sci. Agriculture, 9(10) (2014) 78–82.
[18] D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica 47(2) (1979)
263—292.
[19] R.A. Krohling and T.T.M. de Souza, Combining prospect theory and fuzzy numbers to multi-criteria decision
making, Expert Syst. Appl. 39(13) (2012) 11487-–11493.
[20] R. Lahdelma and P. Salminen, Prospect theory and stochastic multicriteria acceptability analysis (SMAA), Omega
37(5) (2009) 961—971.
[21] T. Lejarraga and J. M¨uller-Trede, When experience meets description: How dyads integrate experiential and
descriptive information in risky decisions, Manag. Sci. 63(6) (2017) 1953—1971.
[22] L. Liang, J. Wu, W.D. Cook and J. Zhu, Alternative secondary goals in DEA cross-efficiency evaluation, Int. J.
Prod. Econ. 113(2) (2008) 1025-–1030.
[23] S. Lim, Minimax and maximin formulations of cross-efficiency in DEA, Computers & Industrial Engineering,
62(3) (2012) 726—731.
[24] H.H. Liu, Y.Y. Song, G.L. Yang, Cross-efficiency evaluation in data envelopment analysis based on prospect
theory, Eur. J. Oper. Res. 273 (2019) 364—375.
[25] J.D. Qin, X.W. Liu and W. Pedrycz, An extended TODIM multi-criteria group decision making method for green
supplier selection in interval type-2 fuzzy environment, European J. Operat. Res. 258(2) (2017) 626-–638.
[26] A. Rahmani, F. Hosseinzadeh Lotfi, M. Rostamy-Malkhalifeh and T. Allahviranloo, A new method for defuzzification and ranking of fuzzy numbers based on the statistical beta distribution, Adv. Fuzzy Syst. 2016 (2016)
6945184.
[27] M. Scholz, V. Dorner, G. Schryen and A. Benlian, A configuration-based recommender system for supporting
e-commerce decisions, European J. Operat. Res. 259(1) (2017) 205—215.
[28] T.R. Sexton, R.H. Silkman and A.J. Hogan, Data envelopment analysis: Critique and extensions, In: R.H.
Silkman (Eds.), Measuring efficiency: An assessment of data envelopment analysis, San Francisco, CA: JosseyBass, 1986.
[29] J.E. Smith and C. Ulu, Risk aversion, information acquisition, and technology adoption, Operat. Res. 65(4) (2017)
1011—1028.[30] B. Vipin and R.K. Amit, Describing decision bias in the newsvendor problem: A prospect theory model, Omega
82 (2017) 132–141.
[31] Y.M. Wang and K.S. Chin, A neutral DEA model for cross-efficiency evaluation and its extension, Expert Syst.
Appl. 37 (2010) 3666—3675.
[32] Y.M. Wang and K.S. Chin, Some alternative models for DEA cross-efficiency evaluation, Int. J. Prod. Econ.
128(1) (2010) 332—338.
[33] L. Wang, Y.M. Wang and L. Mart´ınez, A group decision method based on prospect theory for emergency situations,
Info. Sci. 418 (2017) 119-–135.
[34] J. Wu, L. Liang and Y. Chen, DEA game cross-efficiency approach to Olympic rankings, Omega 37(4) (2009)
909—918.
[35] H.G. Zadeh, J. Haddadnia, O.R. Seryasat and S.M.M. Isfahani, Segmenting breast cancerous regions in thermal
images using fuzzy active contours, EXCLI J. 15 (2016) 532.