Fekete-Szegö functional for regular functions based on quasi-subordination

Document Type : Research Paper

Authors

1 Department of Computer Science and Engineering, RV College of Engineering, Bengaluru- 560 059, Karnataka, India

2 Department of Mathematics, Faculty of Arts-Science, Beykent University, 34500 Istanbul, Turkey

Abstract

Considering two special families of regular functions in an open unit disk based on quasi-subordination, we present sharp bounds for initial coefficient estimates and also determine the classical functional of Fekete-Szegö of functions in these families. Further, we discuss subordination and majorization results for the associated families. Few known and several new consequences are established.

Keywords

[1] A. Alsoboh and M. Darus, On Fekete-Szego problem associated with q-derivative operator, IOP Conf. Ser. J. Phys. Conf. Ser. 1212 (2019), 1–7.
[2] OP. Ahuja and M. Jahangiri, Fekete-Szego problem for a unified class of analytic functions, Pan Amer. Math. J. 7 (1997), 67–78.
[3] R. Bharavi Sharma and K. Rajya Laxmi, Fekete-Szego inequalities for some subclasses of bi-univalent functions through quasi-subordination, Asian Eur. J. Math. 13 (2020), 1–16.
[4] M. C¸ aglar and H. Orhan, Fekete–Szeg¨o problem for certain subclasses of analytic functions defined by the combination of differential operators, Bol. Soc. Mat. Mex. 27 (2021), no. 2, 1–12.
[5] N.E. Cho and S. Owa, On the Fekete-Szego problem for strongly α-logarithmic quasiconvex functions, Southeast Asian Bull. Math. 28 (2004), no. 3, 421–430.
[6] E. Deniz and H. Orhan, The Fekete-Szego problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50 (2010), no. 1, 37–47.
[7] S. Elhaddad and M. Darus, On Fekete-Szego problems for a certain subclass defined by q-analogue of Ruscheweyh operator, IOP Con. Series: J. Phys. Conf. Ser. 1212 (2019), 1–6.
[8] M. Fekete and G. Szego, Eine Bemerkung Uber ungerade schlichte Funktionen , J. London Math. Soc. 8 (1933), no. 2, 85–89.
[9] S. Kant and P.P. Vyas, Sharp bounds of Fekete-Szego functional for quasi-subordination class, Acta. Univ. Sapientiae Math. 11 (2019), 87–98.
[10] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), no. 1, 8–12.
[11] N. Magesh, V.K. Balaji and J. Yamini, Certain subclasses of bistarlike and biconvex functions based on quasi subordination, Abstr. Appl. Anal. 2016 (2016), 1–6.
[12] N. Magesh, V.K. Balaji and C. Abirami, Fekete-Szeg¨o inequalities for certain subclasses of starlike and convex functions of complex order associated with quasi-subordination, Khayyam J. Math. 2 (2016), no. 2, 112–119.
[13] M.H. Mohd and M. Darus, Fekete-Szego problems for Quasi-Subordination classes, Abst. Appl. Anal. 2012 (2012), 1–14.
[14] Z. Nehari, Conformal mapping, Dover, New York, 1975.
[15] T. Panigrahi and R.K. Raina, Fekete-Szego coefficient functional for quasi-subordination class, Afr. Mat. 28 (2017), no. 5, 707–716.
[16] F.Y. Ren, S. Owa and S. Fukui, Some Inequalities on quasi-subordinate functions, Bull. Aust. Math. Soc. 43 (1991), no. 2, 317–324.
[17] M.S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc. 76 (1970), no. 1, 1–9.
[18] H.M. Srivastava, A.K. Mishra and M.K. Das, The Fekete-Szego problem for a subclass of close-to-convex functions, Complex Var. Theory Appl. 44 (2001), no. 2, 145–163.
[19] H.M. Srivastava, S¸ Altınkaya and S. Yal¸cın, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran J. Sci. Technol. Trans. Sci. 43 (2019), no. 4, 1873-–1879.
[20] S.R. Swamy and Y. Sailaja, Horadam polynomial coefficient estimates for two families of holomorphic and biunivalent functions, Int. J. Math. Trends Technol. 66 (2020), no. 8, 131–138.
[21] S.R. Swamy and Y. Sailaja, Sharp bounds of Fekete-Szego functional for quasi-subordination class, Int. J. Math. Trends Technol. 66 (2020), no. 11, 87–94.
[22] S.R. Swamy and Y. Sailaja, On the Fekete-Szego coefficient functional for quasi-subordination class, Palestine J. Math. 10 (2021), no. 2, 1-7.
[23] S.R. Swamy, Ruscheweyh derivative and a new generalized Multiplier differential operator, Ann. Pure Appl. Math. 10 (2015), no. 2, 229–238.
[24] L. Taishun and X. Qinghua, Fekete and Szego inequality for a subclass of starlike mappings of order α on the bounded starlike circular domain in C n, Acta Math. Sci. 37 (2017), no. 3, 722–731.
Volume 13, Issue 2
July 2022
Pages 1105-1115
  • Receive Date: 14 May 2021
  • Revise Date: 17 June 2021
  • Accept Date: 29 July 2021