[1] M.A. Abdlhusein, New approach in graph domination, Ph. D. Thesis, University of Baghdad, Iraq, 2020.
[2] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 2, 2150009.
[3] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 1009– 1016.
[4] M.A. Abdlhusein, Applying the (1, 2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat. Accepted to appear, 2022.
[5] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 4, 2150038.
[6] M.A. Abdlhusein and M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52 (2021), no. 1, 281–288.
[7] M. A. Abdlhusein and M.N. Al-Harere, Doubly connected pitchfork domination and it’s inverse in graphs, TWMS J. App. Eng. Math. 12 (2022), no. 1, 82–91.
[8] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and it’s inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1 (2019), no. 2, 51–55.
[9] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. Instit. Appl. Math. 9 (2020), no. 1, 13–17.
[10] M.A. Abdlhusein and M.N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat. 40 (2022), 1–9.
[11] M.A. Abdlhusein and S.J. Radhi, The arrow edge domination in graphs, Int. J. Nonlinear Anal. Appl. Accepted to appear, 2022.
[12] M.A. Abdlhusein and Z.H. Abdulhasan, Modified types of triple effect domination, reprinted, 2022.
[13] M.A. Abdlhusein and Z.H. Abdulhasan, Stability and some results of triple effect domination, Int. J. Nonlinear Anal. Appl. Accepted to appear, 2022.
[14] Z.H. Abdulhasan and M.A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. 2386 (2022), 060013.
[15] Z.H. Abdulhasan and M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 913–919.
[16] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algor. Appl. 12 (2020), no. 2, 2050025.
[17] M.N. Al-Harere and A.T. Breesam, Further results on bi-domination in graph, AIP Conference Proc. 2096 (2019), no. 1, 020013–020013-9.
[18] L.K. Alzaki, M.A. Abdlhusein and A.K. Yousif, Stability of (1, 2)-total pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 265–274.
[19] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graph, Networks 10 (1980), 211–219.
[20] J. Cyman, M. Lemanskat and J. Raczek, On the doubly connected domination number of a graph, Cent. Eur. J. Math. 4 (2006), no. 1, 34–45.
[21] W. Goddard and M.A. Henning, Independent domination in graph, A survey and Recent, Discrete Math. 313 (2013), 839–854.
[22] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.
[23] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc. New York, 1998.
[24] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs-advanced topics, Marcel Dekker, Inc. 1998.
[25] T.W. Haynes, M.A. Henning and P. Zhang, A survey of stratified domination in graphs, Discrete Math. 309 (2009), 5806–5819.
[26] M.K. Idan and M.A. Abdlhusein, Some properties of discrete topological graph, IOP Conf. Proc. accepted to appear, 2022.
[27] A.A. Jabor and A.A. Omran, Domination in discrete topological graph, AIP Conf. Proc. 2183 (2019), 030006.
[28] A.A. Jabor and A.A. Omran, Topological domination in graph theory, AIP Conf. Proc. 2334 (2021) 020010.
[29] Z.N. Jweir and M.A. Abdlhusein, Applying some dominating parameters on the topological graph, IOP Conf. Proc. accepted to appear, 2022.
[30] Z.N. Jweir and M.A. Abdlhusein, Constructing new topological graph with several properties, reprinted, 2022.
[31] S.S. Kahat, A.A. Omran and M.N. Al-Harere, Fuzzy equality co-neighborhood domination of graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 537–545.
[32] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Letters, India, 14 (1991), 473–475.
[33] G.B. Monsanto and H. Rara, Resolving restrained domination in graphs, Eur. J. Pure and Appl. Math. 14 (2021), no. 3, 829–841.
[34] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 473–480.
[35] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, Some modified types of arrow domination, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 1451–1461.
[36] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979), no. 6, 607–613.
[37] E. Sampathkumar and L. Pushpa Latha, Strong weak domination and domination balance in a graph, Discrete Math. 161 (1996), 235–242.