Some new Hermite-Hadamard type inequalities for p−convex functions with generalized fractional integral operators

Document Type : Research Paper


1 Escuela de Ciencias Fisicas y Matematicas, Facultad de Ciencias Naturales y Exactas, Pontificia Universidad Catolica del Ecuador, Av. 12 de Octubre 1076, Apartado: 17-01-2184, Quito 170143, Ecuador

2 Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan

3 Department of Basic Sciences, King Faisal University, Hofuf 31982, Al-Hasa, Saudi Arabia


By use of definition of a generalized fractional integral operators, proposed by Raina and Agarwal, we establish a fractional  Hermite-Hadamard type inequalities for p−convex functions and an identity with a parameter. We derive several parameterized  integral inequalities associated with this identity, and provide two examples to illustrate the obtained results.


[1] T. Abdeljawad, P.O. Mohammed and A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space 2020 (2020), Article ID 4352357, 14 pages.
[2] M. Alomari, M. Darus and S. Dragomir, Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are quasi-convex, RGMIA 12 (2010), 353–359.
[3] G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007), 1294–1308.
[4] D. Bainov and P. Simeonov, Integral inequalities and applications, Kluwer Academic, Dordrecht, 1992.
[5] G. Cristescu and L. Lupsa, Non-connected convexities and applications, Kluwer Academic Publishers, Dordrecht, 2002.
[6] J. Hadamard, Etude sur les proprietes des fonctions enti`eres en particulier d’une fonction consid´er´ee par Riemann ,
J. Math. Pure Appl. 58 (1893), 171–215.
[7] D. Hyers and S. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821–828.
[8] D. Ion, Some estimates on the Hermite-Hadamard Inequality through quasi-convex functions, Annal. Univ. Craiova, Math. Comp. Sci. Ser. 34 (2007), 82–87.
[9] O. Mangasarian, Pseudo-Convex functions, SIAM. J. Control. 3 (1965), 281–290.
[10] P.O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math. 22 (2019), 539–549.
[11] P.O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci. 44 (2021), no. 3, 2314–2324.
[12] P. O. Mohammed and I. Brevik, A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals, Symmetry 12 (2020), no. 4, 610.
[13] P.O. Mohammed and M.Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl. 2018 (2018), no. 1, 1–33.
[14] P.O. Mohammed, M.Z. Sarikaya and D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry 12 (2020), no.4, 595.
[15] P.O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci. 30 (2018), 258–262.
[16] P.O. Mohammed, M. Vivas-Cortez, T. Abdeljawad and Y. Rangel-Oliveros, Integral inequalities of HermiteHadamard type for quasi-convex functions with applications, AIMS Math. 5 (2020), 7316–7331.
[17] J. Pecaric, F. Proschan and Y. Tong, Convex functions partial orderings and statistical applications, Academic Press, Boston, 1992.
[18] Y. Rangel-Oliveros and M. Vivas-Cortez, Ostrowski type inequalities for functions whose second derivative are convex generalized, Appl. Math. Inf. Sci. 12 (2018), 1117–1126.
[19] J. Viloria and M. Vivas-Cortez, Hermite-Hadamard type inequalities for harmonically convex functions on ncoordinates, Appl. Math. Inf. Sci. 6 (2018), 1–6.
[20] M. Vivas-Cortez, J. Hern´andez and N. Merentes, New Hermite-Hadamard and Jensen type inequalities for hconvex functions on fractal sets, Rev. Colombiana Mat. 50 (2016), 145–164.
[21] M. Vivas-Cortez, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci. 4 (2016), 1055–1064.
[22] M. Vivas-Cortez, T. Abdeljawad, P.O. Mohammed and Y. Rangel-Oliveros, Simpson’s integral inequalities for twice diferentiable convex functions, Math. Probl. Eng. 20 (2020), Article ID 1936461.
[23] A.M. Tameru, E.R. Nwaeze and S. Kermausuor, Strongly (η, ω)-convex functions with nonnegative modulus, J. Ineq. Appl. 2020 (2020), no. 1, 1–17.
[24] M. Tunc and H. Yildirim, On MT-convexity, arXiv preprint, 2012.
Volume 13, Issue 2
July 2022
Pages 1693-1701
  • Receive Date: 26 October 2021
  • Revise Date: 21 April 2022
  • Accept Date: 26 April 2022