[1] M.A. Abdlhusein, New approach in graph domination, Ph. D. Thesis, University of Baghdad, Iraq, 2020.
[2] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 2, 2150009.
[3] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 1009– 1016.
[4] M.A. Abdlhusein, Applying the (1, 2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat. Accepted to appear, (2022).
[5] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 4, 2150038.
[6] M.A. Abdlhusein and M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52 (2021), no. 1, 281–288.
[7] M.A. Abdlhusein and M.N. Al-Harere, Doubly connected pitchfork domination and it’s inverse in graphs, TWMS J. App. and Eng. Math. 12 (2022), no. 1, 82-–91.
[8] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and it’s inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1 (2019), no. 2, 51–55.
[9] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. Inst. Appl. Math. 9 (2020), no. 1, 13–17.
[10] M.A. Abdlhusein and M.N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Math. 40 (2022), 1–9.
[11] M. A. Abdlhusein and Z. H. Abdulhasan, Modified types of triple effect domination, reprinted, 2022.
[12] M.A. Abdlhusein and S.J. Radhi, The arrow edge domination in graphs, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 591–597.
[13] Z.H. Abdulhasan and M.A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. 2386 (2022), 060013.
[14] Z.H. Abdulhasan and M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 913–919.
[15] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algor. Appl. 12 (2020), no. 2, 2050025.
[16] L.K. Alzaki, M.A. Abdlhusein and A.K. Yousif, Stability of (1, 2)-total pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 265–274.
[17] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.
[18] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc. New York, 1998.
[19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs-advanced topics, Marcel Dekker, Inc., 1998.
[20] T.W. Haynes, M.A. Henning, and P. Zhang, A survey of stratified domination in graphs, Discrete Math. 309 (2009), 5806–5819.
[21] M.K. Idan and M.A. Abdlhusein,Some properties of discrete topological graph, IOP Conf. Proc. accepted to appear, 2022.
[22] Z.N. Jweir and M.A. Abdlhusein, Appling some dominating parameters on the topological graph, IOP Conf. Proc. accepted to appear, (2022).
[23] Z.N. Jweir and M.A. Abdlhusein, Some dominating results of the topological graph, Int. J. Nonlinear Anal. Appl. In press (2022) 10.22075/ijnaa.2022.6404.
[24] Z.N. Jweir and M.A. Abdlhusein, Constructing new topological graph with several properties, reprinted, 2022.