[1] G. Alefeld, On the convergence of some interval-arithmetic modifications of Newton’s method, SIAM J. Numer. Anal. 21 (1984), 363–372.
[2] G. Alefeld and J. Herzberger, Introduction to interval computations, New York: Academic Press, 1983.
[3] M.A.T. Ansary and G. Panda, New higher order root finding algorithm using interval analysis, Reliable Computing. 21 (2015) 11–24.
[4] R.R. Capdevila, A. Cordero and J.R. Torregrosa, Stability analysis of iterative methods for solving nonlinear algebraic systems, Current Topics Math. Comput. Sci. 9 (2021), 6–24.
[5] R. Chen and A.C. Ward, Introduction to interval matrices in design, AS ME Design Theory Methodol. 42 (1992), 221–227.
[6] A. Cordero, EG. Villalba, JR. Torregrosa and P. Triguero-Navarro, Convergence and stability of a parametric class of iterative schemes for solving nonlinear systems, Math. 9 (2021), no. 1, 86.
[7] A.D. Dimargonoas, Interval analysis of vibrating systems, J. Sound Vib. 183 (1995), 739–749.
[8] T. Eftekhari, On some iterative methods with memory and high efficiency index for solving nonlinear equations, Int. J. Differ. Equ. 2014 (2014), Article ID 495357, 6 pages.
[9] T. Eftekhari, A new sixth-order Steffensen-Type iterative method for solving nonlinear equations, Int. J. Anal. 2014 (2014), Article ID 685796, 5 pages.
[10] T. Eftekhari, A new family of four-step fifteenth-order root-finding methods with high efficiency index, Comput. Methods. Differ. Equ. 3 (2015), no. 1, 51–58.
[11] T. Eftekhari, A new proof of interval extension of the classic Ostrowski’s method and its modified method for computing the enclosure solutions of nonlinear equations, Numer. Algorithms 69 (2015), no. 1, 157–165.
[12] T. Eftekhari, Producing an interval extension of the King method, Appl. Math. Comput. 260 (2015), 288–291.
[13] T. Eftekhari, An Efficient Class of Multipoint Root-Solvers With and Without Memory for Nonlinear Equations, Acta Math. Vietnam. 41 (2016), 299–311.
[14] T. Eftekhari, Interval extension of the three-step Kung and Traub’s method, J. Modern Meth. Numer. Math. 9 (2018), no. 1-2, 42–52.
[15] T. Eftekhari, Interval extension of the Halley method and its modified method for finding the root enclosures of nonlinear equations, Comput. Meth. Differ. Equ. 8 (2020), no. 2, 222–235.
[16] F. Feng, L.S. Shieh and G. Chen, Model conversions of uncertain linear systems using interval multipoint Pade approximation, Appl. Math. Model. 21 (1997), 233–244.
[17] J. Garloff, Interval mathematics: A bibliography, Freiburger Interval- Berichte 85/6 (1985), 1–122.
[18] J. Garloff, Bibliography on interval mathematics, continuation, Freiburger Interval-Berichte 81/2 (1987), 1–50.
[19] J. Garloff and K.P. Schwierz, A Bibliography on Interval-Mathematics, J. Comput. Appl. Math. 6 (1980), 67–79.
[20] D.K. Gupta, Enclosing the solutions of nonlinear systems of equations, Int. J. Comput. Math. 73 (2000), 389–404.
[21] D.K. Gupta and C.N. Kaul, A modification of Krawczyk’s algorithm, Int. J. Comput. Math. 66 (1998), 67–77.
[22] T.C. Henderson, T.M. Sobh, F. Zana, B. Briiderlin and C.Y. Hsu, Sensing strategies based on manufacturing knowledge, ARPA Image Understanding Workshop, University of California Riverside, Monterey, 1994, pp. 1109–1113.
[23] R.B. Kearfott and V. Kreinovich, Applications of interval computations, Dordrecht, Kluwer Academic Publishers, 1996.
[24] T. Lotfi and T. Eftekhari, A new optimal eighth-order Ostrowski-Type family of iterative methods for solving nonlinear equations, Chinese J. Math. 2014 (2014), Article ID 369713, 7 pages.
[25] T. Lotfi and M. Momenzadeh, Constructing an efficient multi-step iterative scheme for nonlinear system of equations, Comput. Meth. Differ. Equ. 9 (2021), no. 3, 710–721.
[26] S. Malan, M. Milanese and T. Taragna, Robust analysis and design of control systems using interval arithmetic, Automatica 33 (1997), 1363–1372.
[27] M. Milanese, J. Norton, N. Piet-Lahanier and E. Walter (eds.). Bounding approaches to system identification, New York, Plenum Press, 1996.
[28] M. Moccari and T. Lotfi, Using majorizing sequences for the semi-local convergence of a high-order and multipoint iterative method along with stability analysis, J. Math. Eext. 15 (2020), no. 2, 1–32.
[29] M. Mohamadizade, T. Lotfi and M. Amirfakhriyan, Some Improvements of The Cordero-Torregrosa Method for The Solution of Nonlinear Equations, Int. J. Ind. Math. 13 (2021), no. 3, 333–341.
[30] R.E. Moore, Interval arithmetic and automatic error analysis in digital computing, Ph.D. Dissertation, Stanford University, 1962.
[31] R.E. Moore, Interval analysis, Prentice-Hall, Englewood Cliff, New Jersey, 1966.
[32] R.E. Moore, R.B. Kearfott, and M.J. Cloud, Introduction to interval analysis, SIAM, Philadelphia, 2009.
[33] K. Nickel, Interval mathematics, Lecture Notes in Computer Science 29, Berlin: Springer-Verlag, 1975.
[34] K. Nickel, Interval mathematics, New York: Academic Press, 1980.
[35] K. Nickel, Interval mathematics, Lecture Notes in Computer Science 212. Berlin: Springer-Verlag, 1985.
[36] EP. Oppenheimer and AN. Michel, Application of interval analysis techniques to linear systems: Part IFundamental Results, IEEE Trans. Circ. Syst. 35 (1988), 1129–1138.
[37] EP. Oppenheimer and AN. Michel, Application of interval analysis techniques to linear systems: Part II-The interval matrix exponential function, IEEE Trans. Circ. Syst. 35 (1988), 1230–1242.
[38] E.P. Oppenheimer and A.N. Michel, Application of interval analysis techniques to linear systems: Part III-Initial value problems, IEEE Trans. Circ. Syst. 35 (1988), 1243–1256.
[39] W. Pedrycz, Granular computing: An emerging paradigm, Springer-Verlag Berlin and Heidelberg GmbH, 2013.
[40] M.S. Petkovic, Multi-step root solvers of Traub’s type in real interval Arithmetic, Appl. Math. Comput. 248 (2014), 430–440.
[41] MS. Petkovi´c, LD. Petkovi´c and B. Neta, On generalized Halley-like methods for solving nonlinear equations, Appl. Anal. Discrete Math. 13 (2019), no. 2, 399–422.
[42] A. Piazzi and G. Marro, Robust stability using interval analysis, Int. J. Syst. Sci. 21 (1996), 1381–1390.
[43] A. Piazzi and A. Visoli, An interval algorithm for minimum-jerk trajectory planning of robot manipulators, Proc. 36th Conf. Decision Control, San Diego Calif. U.S.A. 1997, pp. 1924–1927.
[44] A. Piazzi and A. Visoli, Global minimum-time trajectory planning of mechanical manipulators using interval analysis, Int. J. Control 71 (1998), 631–652.
[45] P.D. Proinov, S.I. Ivanov and M.S. Petkovi´c, On the convergence of Gander´s type family of iterative methods for simultaneous approximation of polynomial zeros, Appl. Math. Comput. 349 (2019), 168–183.
[46] S.S. Rao and L. Berke, Analysis of uncertain structural systems using interval analysis, J. Amer. Inst. Aeron. Astron. 35 (1997), 727–735.
[47] H. Ratschek and J.G. Rokne, Computer methods for the range of functions, Chichester: Ellis Horwood, 1984.
[48] J.G. Rokne, Interval arithmetic and interval analysis: An introduction, Pedrycz W. (eds) Granular Computing. Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 2001.
[49] S.M. Rump, INTLAB - INTerval LABoratory, Tibor Csendes, Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 1999.
[50] Y. Seif and T. Lotfi, An efficient multistep iteration scheme for systems of nonlinear algebraic equations associated with integral equations, Math. Meth. Appl. Sci. 43 (2020), no. 14, 8105–8115.
[51] S. Singh and D.K. Gupta, Higher order interval iterative methods for nonlinear equations, J. Appl. Math. Inf. 33 (2015), no. 1-2, 61–76.
[52] S. Singh, D.K. Gupta and F. Roy, Higher order multi-step interval iterative methods for solving nonlinear equations in Rn, SeMA. 74 (2017), no. 2, 133–146.
[53] J.R. Sharma, R.K. Guha and R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations, Numer. Algorithms 62 (2013), 307–323.
[54] V. Torkashvand, A general class of one-parametric with memory method for solving nonlinear equations, Caspian J. Math. Sci. 10 (2021), no. 2, 309–335.
[55] V. Torkashvand, M.A. Fariborzi Araghi, Construction of iterative adaptive methods with memory with 100% improvement of convergence order, J. Math. Ext. 15 (2020), no. 3, 1–32.
[56] V. Torkashvand and R. Ezzati, On the efficient of adaptive methods to solve nonlinear equations, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 301–316.
[57] V. Torkashvand and M. Kazemi, On an Efficient Family with Memory with High Order of Convergence for Solving Nonlinear Equations, Int. J. Ind. Math. 12 (2020), no. 2, 209–224.