[1] S. Abbasbandy, B. Azarnavid and M.S. Alhuthali, A shouting reproducing kernel Hilbert space method for multiple solutions of nonlinear boundary value problems, J. Comput. Appl. Math. 279 (2015), 293–305.
[2] A. Bhrawy, M. Zaky and J. TenreiroMachado, Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev Tau approximation, J. Optim. Theory Appl. 174 (2017), 321—341.
[3] W.E. Boyce and R.C. Di Prima, Differential Equations Elementary and Boundary Value Problems, Wiley, New York, 1977
[4] M. Cui and Y. Lin, Nonlinear numerical analysis in the reproducing kernel space, Nova Science Pub. Inc., Hauppauge, 2009.
[5] M. Dehghan and R. Salehi, A method based on meshless approach for the numerical solution of the two-space dimensional hyperbolic telegraph equation, Math. Meth. Appl. Sci. 35 (2012), 1220—1233.
[6] S. Farzaneh Javan and S. Abbasbandy and M. Ali Fariborzi Araghi, Application of reproducing kernel Hilbert space method for solving a class of nonlinear integral equations, Math. Prob. Engin. 2017 (2017), Article ID 7498136, 10 pages.
[7] M.R. Foroutan, A. Ebadian and H. Rahmani Fazli, Generalized Jacobi reproducing kernel method in Hilbert spaces for solving the Black-Scholes option pricing problem arising in financial modelling, Math. Model. Anal. 23 (2018), no. 4, 538–553.
[8] M.R. Foroutan, A. Ebadian and R. Asadi, Reproducing kernel method in Hilbert spaces for solving the linear and nonlinear four-point boundary value problems, Int. J. Comput. Math., 95(10), pp 2128-2142, 2018.
[9] F. Geng, Solving singular second-order three-point boundary value problems using reproducing kernel Hilbert space method, Appl. Math. Comput. 215 (2009), 2095–2102.
[10] F. Geng and M. Cui, A reproducing kernel method for solving nonlocal fractional boundary value problems, Appl. Math. Lett. 25 (2012), 818–823.
[11] E.A. Gonzalez–Velasco, Fourier analysis and boundary value problems, Academic Press, New York, 1995.
[12] M. Grau–Sanchez, M. Noguera and J. Manuel Gutierrez, On some computational orders of convergence, Appl. Math. Lett. 23 (2010), 472–478.
[13] R.M. Hafez, Numerical solution of linear and nonlinear hyperbolic telegraph type equations with variable coefficients using shifted Jacobi collocation method, Comput. Appl. Math. 37 (2018), no. 4, 5253–5273.
[14] P.M. Jordan and A. Puri, Digital signal propagation in dispersive media, J. Appl. Phys. 85 (1999), no. 3, 1273–1282.
[15] X. Li and B. Wu, Solving non-local fractional heat equations based on the reproducing kernel method, Thermal ci. 20 (2016), no. 3, 711–716.
[16] G. Liu and Y. Gu, An introduction to meshfree methods and their programming, Springer, Amsterdam, The Netherlands, 2005.
[17] C. Minggen and L. Yingzhen, Nonlinear numerical analysis in the reproducing kernel space, Nova Science, New York, NY, USA, 2009.
[18] M. Mohammadi and R. Mokhtari, Solving the generalized regularized long wave equation on the basis of a reproducing kernel space, J. Comput. Appl. Math. 235 (2011), 4003–4011.
[19] M. Mohammadi, R. Mokhtari and H. Panahipour, A Galerkin–reproducing kernel method: Application to the 2D nonlinear coupled Burgers’ equations, Eng. Anal. Bound. Elem. 37 (2013), 1642–1652.
[20] M. Mohammadi, R. Mokhtari and H. Panahipour, A Galerkin–reproducing kernel method; Application to the 2D nonlinear coupled Burgers equations, Engin. Anal. Bound. Elem. 37 (2016), 1642–1652.
[21] R. Mokhtari, F. Toutian Isfahani and M. Mohammadi, Solving a class of nonlinear differential-difference equations in the reproducing kernel space, Abstr. Appl. Anal. 2012 (2012), Article ID 514103.
[22] J.I. Ramos, Explicit finite difference methods for the EW and RLW equations, Appl. Math. Comput. 179 (2007), 622-–638.
[23] A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Eq. 26 (2010), 239-–252.
[24] H. Sahihi, T. Allahviranloo and S. Abbasbandy, Solving system of second–order BVPs using a new algorithm based on the reproducing kernel Hilbert space, Appl. Numer. Math. 151 (2010), 27–39.
[25] S. Saitoh, Integral transforms, reproducing kernels and their applications, vol. 369 of Pitman Research Notes in Mathematics Series, Longman, Harlow, UK, 1997.
[26] E. Shivanian and H.R. Khodabandehlo, Application of meshless local radial point interpolation (MLRPI) on generalized one-dimensional linear telegraph equation, Int. J. Adv. Appl. Math. and Mech. 2 (2015), no. 3, 38–50.
[27] S.S. Xie, S.C. Yi and T.I. Kwon, Fourth-order compact difference and alternating direction implicit schemes for telegraph equations, Comput. Phys. Commun. 183 (2012), 552–569.
[28] W. Yulan, T. Chaolu and P. Jing, New algorithm for second–order boundary value problems of integro-differential equation, J. Comput. Appl. Math. 229 (2009), 1–6.
[29] S. Zaremba, Sur lecalcul numerique des fonctions demandees dans le probleme de Dirichlet et le probleme hydrodynamique, Bull. Int. Acad. Sci. Cracovie 1907 (1907), 125–195.
[30] Y. Zhou, M.G. Cui and Y. Lin, Numerical algorithm for parabolic problems with non–classical conditions, J. Comput. Appl. Math. 230 (2009), 770—780.