Coefficient estimates for subclasses of analytic functions related to Bernoulli's lemniscate and an application of Poisson distribution series

Document Type : Research Paper

Authors

1 Department of Mathematics, SAS, Vellore Institute of Technology, deemed to be University, Vellore-632014, India

2 Faculty of Mathematics and Computer Science, Babes-Bolyai University, 400084 Cluj-Napoca, Romania

Abstract

Using the q-calculus operator we defined a new subclass of analytic functions Mq(ϑ,Φ) defined in the open unit disk Δ={zC:|z|<1} related with Bernoulli's lemniscate and obtained certain coefficient estimates, Fekete-Szeg\H{o} inequality results for fMq(ϑ,Φ). As a special case of our result, we obtain Fekete-Szeg\H{o} inequality for a class of functions defined through Poisson distribution and further with the help of MAPLE\texttrademark\ software we find Hankel determinant inequality for fMq(ϑ,Φ). Our investigation generalises some previous results obtained in different articles.

Keywords

[1] C. Carath´eodory, Uber den Variabilit¨atsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo (2) 32 (1911), 193–217.
[2] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, USA, 1983.
[3] M. Fekete and G. Szeg˝o, Eine Bemerkung ¨uber ungerade schlichte Funktionen, J. Lond. Math. Soc. (2) 8 (1933), 85–89.
[4] M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Var. Theory Appl. 14 (1990), no. 1-4, 77–84.
[5] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edin. 46 (1908), 253–281.
[6] F.R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
[7] W. Koepf, On the Fekete-Szeg˝o problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89–95.
[8] W. Koepf, On the Fekete-Szego problem for close-to-convex functions-II, Arch. Math. (Basel) 49 (1987), 420–433.
[9] R.J. Libera and E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225–230.
[10] R.J. Libera and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251–257.
[11] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L. Yang and S. Zhang (Eds.), Int. Press, Cambridge, MA, (1994), 157–169.
[12] T.H. MacGregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc. 104 (1962), no. 3, 532–537.
[13] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. 28 (2017), 1357–1366.
[14] G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45 (2016), no. 4, 1101–1107.
[15] K. Nazar, M. Shafiq, M. Darus, B.K. Qazai, A. Zahoor, Upper bound of the third Hankel determinant for a subclass of q–starlike functions associated with the lemniscate of Bernoulli, J. Math. Ineq. 14 (2020), no. 1, 53-–65.
[16] Ch. Pommerenke, Univalent Functions, Vanderhoeck & Ruprecht, G¨ottingen, 1975.
[17] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. (2014), Art. ID 984135, 1–3.
[18] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27 (2016), no. 5, 1021–1027.
[19] M. Raza and S. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013:412, (2013), 1–8.
[20] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), no. 1, 109–115.
[21] A.K. Sahoo and J. Patel, Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, Int. J. Anal. Appl. 6 (2014), no. 2, 170–177.
[22] J. Sokol, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49 (2009), no. 2, 349–353.
[23] J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Scient. Univ. Tech. Resoviensis, Mat. 19 (1996), 101–105.
[24] H.M. Srivastava, Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020), no. 1, 327–344.
Volume 13, Issue 2
July 2022
Pages 237-251
  • Receive Date: 06 July 2020
  • Revise Date: 06 September 2020
  • Accept Date: 13 September 2020