[1] A. Abo-Zeid, Global behavior and oscillation of a third order difference equation, Quaest. Math. 44 (2022), no.
9, 1261–1280.
[2] S. Abulrub and M. Aloqeili, Dynamics of the system of difference equations xn+1 = A +
yn−k
yn
,
yn+1 = B +
xn−k
xn
, Qual. Theory Dyn. Syst. no. 19 (2020), 19–69.
[3] E. Camouzis and G. Ladas, Dynamics of third order rational difference equations with open problems and
conjecture advances in discrete mathematics and applications, Chapman & Hall/CRC, Boca Raton, 2008.
[4] E. Camouzis and G. Papaschinopoulos, Global asymptotic behavior of positive solutions on the system of rational
difference equations xn+1 = 1 + xn
yn−m
, yn+1 = 1 + yn
xn−m
, Appl. Math. Lett. 17 (2004), no. 6, 733–737.
[5] I. Dekkar, N. Touafek and Y. Yazlik, Global stability of a third-order nonlinear system of difference equations
with period-two coefficients, RACSAM 111 (2017), 325–347.
[6] S. Elaydi, An introduction to difference equations, undergraduate texts in mathematics, Springer, New York,
2005.
[7] M. G¨um¨us, The global asymptotic stability of a system of difference equations, J. Differ. Equ. Appl. 24 (2018),
no. 6, 976–991.
[8] M. G¨um¨us and R. Abo-Zeid, Global behavior of a rational second order difference equation, J. Appl. Math.
Comput. 62 (2020), no. 1, 119–133.
[9] O. Ocalan, Dynamics of difference equation xn+1 = pn+
xn−k
xn
with a period-two coefficient, Appl. Math. Comput.
228 (2014), 31–37.
[10] G. Papaschinopoulos, On the system of two difference equations xn+1 = A +
xn−1
yn
, yn+1 = A +
yn−1
xn
, Int. J.
Math. Sci. 23 (2000), 839–848.
[11] G. Papaschinopoulos, C.J. Schinas and G. Stefanidou, On the nonautonomous difference equation xn+1 = An +
x
p
n−1
x
q
n
, Appl. Math. Comput. 217 (2011), 5573–5580.
[12] M. Pituk, More on Poincare’s and Perron’s theorems for difference equations, J. Difference Equ. Appl. 8 (2002),
no. 3, 201–216.
[13] M. Saleh, N. Alkoumi and A. Farhat, On the dynamics of a rational difference equation xn+1 =
α+βxn+γxn−k
Bxn+Cxn−k
,
Chaos Solitons Fract. 96 (2017), 76–84.
[14] D. Zhang, W. Ji, L. Wang and X. Li. On the symmetrical system of rational difference equations xn+1 =
A +
yn−k
yn
, yn+1 = A +
xn−k
xn
, Appl. Math. 4 (2013), 834–837.
[15] Q. Zhang, W. Zhang, Y. Shao and J. Liu, On the system of high order rational difference equations, Int. Scholarly
Res. Not. 2014 (2014), 1–5.
[16] Q. Zhang, L. Yang and J. Liu, On the recursive system xn+1 = A +
xn−m
yn
, yn+1 = A +
yn−m
xn
, Act Math. Univ.
Comenianae 82 (2013), no. 2, 201–208.