[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416-420.
[2] M. Abbas, M.A. Khan and S. Radenovi´c, Common coupled fixed point theorems in cone metric spaces for wcompatible mappings, Appl. Math. Comput. 217 (2010), 195–202.
[3] T. Abdeljawad and E. Karapinar, Quasicone metric spaces and generalizations of Caristi Kirk’s theorem, Fixed Point Theory Appl. 2009 (2009), Article ID 574387, 1–9.
[4] V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), no. 15, 4889–4897.
[5] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379–1393.
[6] M. Borcut and V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput. 218 (10) (2012), 5929–5936.
[7] B. S. Choudhary and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524–2531.
[8] S. Dalal, M. A. Khan and S. Chauhan, n-tupled coincidence point theorems in partially ordered metric spaces for compatible mappings, Abstr. Appl. Anal. 2014 (2014), Article ID 614019, 1-8.
[9] S. Hadi Bonab, R. Abazari and A. Bagheri Vakilabad, Partially ordered cone metric spaces and coupled fixed point theorems via α-series, Math. Anal. Contemp. Appl. 1 (2019), no. 1, 50–61.
[10] S. Hadi Bonab, R. Abazari1, A. Bagheri Vakilabad and H. Hosseinzadeh, Coupled fixed point theorems on G-metric spaces via α-series, Glob. Anal. Discrete Math. 6 (2021), no. 1, 1–12.
[11] S. Hadi Bonab, R. Abazari, A. Bagheri Vakilabad and H. Hosseinzadeh, Generalized metric spaces endowed with vector-valued metrics and matrix equations by tripled fixed point theorems, J. Inequal. Appl. 2020 (2020), 1–16.
[12] L. G. Haung and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476.
[13] A. Razani and V. Parvaneh, Coupled coincidence point results for (ψ, α, β)-weak contractions in partially ordered metric spaces, J. Appl. Math. 2012 (2012).
[14] N. Hussain, V. Parvaneh and F. Golkarmanesh, Coupled and tripled coincidence point results under (F, g)-invariant sets in Gb-metric spaces and G − α-admissible mappings, Math. Sci. 9 (2015), no. 1, 11–26.
[15] M. Imdad, A. H. Soliman, B.S. Choudhury and P. Das, On n-tupled coincidence point results in metric spaces, J. Oper. 2013 (2013), Article ID 532867, 1–8.
[16] E. Karapinar, Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 609281, 1–9.
[17] V. Lakshmikantham and L. Ciri´c, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341–4349.
[18] D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008), 876–882.
[19] V. Parvaneh, S. Hadi Bonab, H. Hosseinzadeh and H. Aydi, A tripled fixed point theorem in C*-algebra-valued metric spaces and application in integral equations, Adv. Math. Phys. 2021 (2021), 1–6.
[20] W. Shatanawi, Partially ordered cone metric spaces and coupled fixed point results, Comput. Math. Appl. 60 (2010), 2508–2515.
[21] V. Sihag, C. Vetro and R.K. Vats, A fixed point theorem in G-metric spaces via α-series, Q. Math. 37 (2014), 1–6.
[22] R. K. Vats, K. Tas, V. Sihag and A. Kumar, Triple fixed point theorems via α-series in partially ordered metric spaces, J. Inequal. Appl. 2014 (2014), 1–12.