[1] M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J.
Math. Anal. Appl. 270 (2002), no. , 181–188.
[2] R.P. Agarwal, M. Meehan and D. O’regan, Fixed point theory and applications, Vol. 141, Cambridge University
Press., 2001.
[3] P. Agarwal, J. Mohamed and S. Bessem, Fixed point theory in metric spaces, Recent Advances and Applications,
Springer, 2018.
[4] M. Ahmadullah, J. Ali and M. Imdad, Unified relation-theoretic metrical fixed point theorems under an implicit
contractive condition with an application, Fixed Point Theory Appl. 2016 (2016), no. 1, 1–15.
[5] M. Ahmadullah, M. Imdad and R. Gubran, Relation-theoretic metrical fixed point theorems under nonlinear
contractions, arXiv preprint arXiv:1611.04136, (2016)
[6] M. Ahmadullah, A.R. Khan and M. Imdad, Relation-theoretic contraction principle in metric-like as well as
partial metric spaces, arXiv preprint arXiv:1612.05521. (2016.).
[7] A. Alam and M. Imdad, Relation-theoretic metrical coincidence theorems, arXiv preprint arXiv:1603.09159. (2016).
[8] A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17 (2015), no. 4,
693–702.
[9] J. Ali and M. Imdad, An implicit function implies several contraction conditions, Sarajevo J. Math. 4 (2008),
no. 17, 269–285.
[10] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012
(2012), no. 1, 204.
[11] H. Aydi and E.Karapinar, Fixed point results for generalized α − ψ-contractions in metric-like spaces and applications, Electronic J. Differ. Equ. 133 (2015), 1–15.[12] H. Aydi, A. Felhi and S Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, J.
Nonlinear Sci. Appl. 10 (2017), no. 4, 1524–1537.
[13] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund.
Math. 3 (1922), no. 1, 133–181.
[14] S. Beloul, A Common Fixed Point Theorem For Generalized Almost Contractions In Metric-Like Spaces, Appl.
Math. E-Notes 18 (2018), 127–139.
[15] V. Berinde, Approximating fixed points of implicit almost contractions, Hacettepe J. Math. Statist. 40 (2012), no.
1, 93–102.
[16] V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point
Theory Appl. 2012 (2012), no. 1, 105.
[17] C. Chen, J. Dong and C. Zhu, Some fixed point theorems in b-metric-like spaces, Fixed Point Theory Appl. 2015
(2015), no. 1, 1–10.
[18] K.S. Eke, B. Davvaz and J.G. Oghonyon, Relation-theoretic common fixed point theorems for a pair of implicit
contractive maps in metric spaces, Commun. Math. Appl. 10 (2019), no. 1, 159–168.
[19] M. Fr´echet, Sur quelques points du calcul fonctionnel, Rend. Circolo Mat. Palermo 22 (1906), no. 1, 1–72.
[20] Hunter, J.K. and Nachtergaele, B., Applied analysis, World Scientific Publishing Company, (2001).
[21] N. Hussain, J.R. Roshan, V. Parvaneh and Z. Kadelburg, Fixed points of contractive mappings in-metric-like
spaces, Sci. World J. 2014 (2014), 15 pages.
[22] M. Imdad, R. Gubran and M. Ahmadullah, Using an implicit function to prove common fixed point theorems,
Publ. arXiv preprint arXiv:1605.05743., (2016).
[23] M. Imdad, S. Kumar and M.S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad.
Mat. 11 (2002), no. 1, 135–143.
[24] G. Jungck, Commuting mappings and fixed points, Amer. Math. Month. 83 (1976), no. 4, 261–263.
[25] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986), no. 4, 771–779.
[26] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications, J.
AIMS Math. 5 (2020), no. 4, 3125–3137.
[27] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, R-topological spaces and SR-topological spaces with their
applications, Math. Sci. 14 (2020), no. 3, 249–255.
[28] B. Kolman, R.C. Busby and S. Ross, Discrete mathematical structures, 3rd edn. PHI Pvt. Ltd., New Delhi, 2000.
[29] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci. Paper Edition, 728 (1994), 183–197.
[30] H.K. Nashine, C. Vetro, W. Kumam and P. Kumam, Fixed point theorems for fuzzy mappings and applications
to ordinary fuzzy differential equations, Adv. Differ. Equ. 2014 (2014), 1–14.
[31] S. Oltra and O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istid. Mat. Univer. Trieste
36 (2004), no. 1-2, 17–26.
[32] S. Oltra, S. Romaguera and E.A. S´anchez-P´erez, Bicompleting weightable quasi-metric spaces and partial metric
spaces, Rend. Circolo Mat. Palermo 51 (2002), no. 1, 151–162.
[33] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonst. Math. 32
(1999), no. 1, 157–164.
[34] B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and
applications, Commun. Math. Anal. 13 (2012), no. 2, .82–97.
[35] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32
(1982), no. 46, 149–153.
[36] N. Shahzad and O. Valero, On 0-complete partial metric spaces and quantitative fixed point techniques in denotational semantics, Abstr. Appl. Anal. 2013 (2013), 1–11.[37] W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy
metric spaces, J. Appl. Math. 2011 (2011), 14 pages.
[38] C. Vetro and F.Vetro, Common fixed points of mappings satisfying implicit relations in partial metric spaces, J.
Nonlinear Sci. Appl, 6 (2013), no. 3, 152–161.