[1] Z. Cai and N. Vasconcelos, Cascade R-CNN: delving into high quality object detection, IEEE Conf. Comput. Vision Pattern, 2018, pp. 6154–6162.
[2] W. Chen, H. Huang, S. Peng, C. Zhou and C. Zhang, YOLO-face: a real-time face detector, Visual Comput. 37 (2020), no. 4, 805–813.
[3] Y. Chen, Y. Tai, X. Liu, C. Shen and J. Yang, FSRNet: end-to-end learning face super-resolution with facial priors, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2018, pp. 2492–2501.
[4] M.F. Hansen, M.L. Smith, L.N. Smith, M.G. Salter and B. Grieve, Towards on-farm pig face recognition using convolutional neural networks, Comput. Ind. 98 (2018), 145–152.
[5] G.B. Huang, M. Ramesh, T. Berg and E. Learned-Miller, Labeledfaces in the wild: a database for studying face recognition in unconstrained environments, Workshop on Faces in’Real-Life’Images: Detection Alignment Recognition, 2008.
[6] N. Jain, S. Kumar, A. Kumar, P. Shamsolmoali and M. Zareapoor, Hybrid deep neural networks for face emotion recognition, Pattern Recognit. Lett. 115 (2018), 101–106.
[7] V. Jain and E. Learned-Miller, Fddb: A benchmark for face detection in unconstrained settings, UMass Amherst Tech. Rep. 2 (2010), no. 6.
[8] D.K. Jain, P. Shamsolmoali and P. Sehdev, Extended deep neural network for facial emotion recognition, Pattern Recog. Lett. 120 (2019), 69–74.
[9] M.R. Ju, H.B. Luo, Z.B. Wang, M. He, Z. Chang and B. Hui, Improved YOLO v3 algorithm and its application in small target detection, Acta Opt. Sin. 39 (2019), no. 7, 0715004.
[10] M. Kostinger, P. Wohlhart, P. Roth and H. Bischof, Annotated facial landmarks in the wild: a large-scale, realworld database for facial landmark localization, IEEE Int. Conf. Comput. Vision Workshops, 2011, pp. 2144–2151.
[11] A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, In F. Pereira, C. Burges, L. Bottou and K. Weinberger (Eds.), Adv. Neural Inf. Process. Syst. 25 (2012), 1097–1105.
[12] N. Kumar, P.N. Belhumeur and S.K. Nayar, FaceTracer: a search engine for large collections of images with faces, Eur. Conf. Comput. Vision (ECCV), 2008, pp. 340–353.
[13] H. Li, Z. Lin, X. Shen, J. Brandt and G. Hua, A convolutional neural network cascade for face detection, In IEEE Conference on Computer Vision and Pattern Recognition, (2015), 5325–5334.
[14] Z. Liu, P. Luo, X. Wang and X. Tang, Deep learning face attributes in the wild, Proc. IEEE Int. Conf. Comput. Vision, 2015, pp. 3730–3738.
[15] T. Ojala, M. Pietik¨ainen and D. Harwood, Performance evaluation of texture measures with classification based on Kullback discrimination of distributions, Proc. 12th IAPR Int. Conf. Pattern Recog. (ICPR 1994), 1994, pp. 582–585.
[16] R. Ranjan, V.M. Patel and R. Chellappa, A deep pyramid deformable part model for face detection, Int. Conf. Biometrics Theory Appl. Syst. 2015, pp. 1–8.
[17] R. Ranjan, V.M. Patel and R. Chellappa, Hyperface: a deep multi-task learning framework for face detection,landmark localization, pose estimation, and gender recognition, IEEE Trans. Pattern Anal. Machine Intell. 41 (2016), no. 1, 121–135.
[18] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You only look once: unified, real-time object detection, Proc. IEEE Conf. Comput. Vision Pattern Recog. 2016, pp. 779–788.
[19] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid and S. Savarese, Generalized intersection over union: a metric and a loss for bounding box regression, Proc. IEEE/CVF Conf. Comput. Vision Pattern Recog., 2019, pp. 658–666.
[20] Y. Savani, C. White and N.S. Govindarajulu, Intra-processing methods for debiasing neural networks, Proc. Adv. Neural Inf. Process. Syst. 33 (2020), 2798–2810.
[21] O.R. Seryasat and J. Haddadnia, Assessment of a novel computer aided mass diagnosis system in mammograms, Biomed. Res. 28 (2017), no. 7, 3129–3135.
[22] O.R. Seryasat and J. Haddadnia, Evaluation of a new ensemble learning framework for mass classification in mammograms, Clinical Breast Cancer 18 (2018), no. 3, 407–420.
[23] O.R. Seryasat, J. Haddadnia and H. Ghayoumi Zadeh, Assessment of a novel computer aided mass diagnosis system in mammograms, Iran. Quart. J. Breast Disease 9 (2016), no. 3, 31–41.
[24] R. Soundararajan and S. Biswas, Machine vision quality assessment for robust face detection, Signal Process.: Image Commun. 72 (2019), 92–104.
[25] X. Sun, P. Wu and S.C. Hoi, Face detection using deep learning: an improved faster RCNN approach, Neurocomput. 299 (2018), 42–50.
[26] M.N.A. Tawhid and E.K. Dey, Gender recognition system from facial image, Int. J. Comput. Appl. 180 (2018), no.23, 5–14.
[27] M.J. Uddin, P.C. Barman, K.T. Ahmed, S.A. Rahim, A.R. Refat and M. Abdullah-Al-Imran, A convolutional neural network for real-time face detection and emotion & gender classification’s, SR J. Electr. Commun. Eng. (IOSR-JECE) 15 (2020), no. 3, 37–46.
[28] S. Yang, P. Luo, C.C. Loy and X. Tang, Faceness-net: face detection through deep facial part responses, IEEE Trans. Pattern Anal. Mach. Intell. 40 (2018), no. 8, 1845–1859.
[29] E. Zangeneh, M. Rahmati and Y. Mohsen Zadeh, Low resolution face recognition using a two-branch deep convolutional neural network architecture, Expert Syst. Appl. 139 (2020), 112854.
[30] D. Zeng, F. Zhao, S. Ge and W. Shen, Fast cascade face detection with pyramid network, Pattern Recognit. Lett. 119 (2019), 180–186.
[31] N. Zhang, M. Paluri, M. Ranzato, T. Darrell and L. Bourdev, Panda: pose aligned networks for deep attribute modeling, IEEE Conf. Comput. Vision Pattern Recogn., 2014, pp. 1637–1644.
[32] M.M. Zhang, K. Shang and H. Wu, Learning deep discriminative face features by customized weighted constraint, Neurocomput. 332 (2019), 71–79.
[33] C. Zhang, X. Xu and D. Tu, Face detection using improved faster RCNN (2018), arXiv preprint arXiv:1802.02142, (2018).
[34] X. Zhao, X. Liang, C. Zhao, M. Tang and J. Wang, Real-time multi-scale face detector on embedded devices, Sensors 19 (2019), no. 9, 2158.landmark localization, pose estimation, and gender recognition, IEEE Trans. Pattern Anal. Machine Intell. 41 (2016), no. 1, 121–135.