[1] B. Akdemir and L. Yu, Elliot waves predicting for stock marketing using euclidean based normalization method merged with artificial neural network, Fourth Int. Conf. Comput. Sci. Convergence Inf. Technol., 2009.
[2] D. Anveshini, V. Revathi, A. Eswari, P. Mounika and K. Meghana, Pattern recognition based fingerprint authentication for ATM system, Int. Conf. Electron. Renew. Syst. (ICEARS), 2022.
[3] G. Atsalakis and E. Dimitrakakis, Elliott Wave Theory and neuro-fuzzy systems, in stock market prediction:The WASP system, Expert Syst. Appl. 38 (2011), 9196–9206.
[4] G. Atsalakis and K. A. Valavanis, Forecasting stock market short-term trends using a neuro-fuzzy based methodology, J. Expert Syst. Appl. 36 (2009), 10696–10707.
[5] S. Chen, S. Bao and Y. Zhou, The predictive power of Japanese candlestick charting in Chinese stock market, Phys. A: Statist. Mech. Appl. 457 (2016), 148–165.
[6] R. Elliott, The Wave Principle, Lulu Press, 1938.
[7] Forex, 2021, Available: http://wikipedia.org.
[8] A. Ganti, Foreign Exchange Market, 2021, Available: https://www.investopedia.com.
[9] Forex historical data, 2020, Available: http://www.fxhistoricaldata.com/.
[10] T.M. Ghazal, Convolutional neural network based intelligent handwritten document recognition, Comput. Materials Contin. 70 (2022), no. 3, 4563–4581.
[11] R. Gonzalez and M. Thomas, Syntatic Pattern Recognition:an Introduction, MA: Addison Wesley, Reading, 1978.
[12] N. Gorelik, J. Chong and D. Lin, Pattern recognition in musculoskeletal imaging using artificial intelligence, Seminars in musculoskeletal radiology. 24(1) (2020) 38–49.
[13] M.J. Horton, Stars, crows, and doji: the use of candlesticks in stock selection, Quart. Rev. Econ. Finance 49 (2009), no. 2, 283–294.
[14] M. Kotyrba, E. Volna, M. Janosek, H. Habiballa and D. Braz, Methodology for Elliott waves pattern recognition, Ratio 34 (2013), no. 55, 0–618.
[15] T. Lu and Y. Shiu, Tests for two-day candlestick patterns in the emerging equity market of Taiwan, Emerg. Markets Finance Trade 48 (2012), no. , 41–57.
[16] B.R. Marshall, M.R. Young and L.C. Rose, Candlestick technical trading strategies: Can they create value for investors?, J. Bank. Finance 30 (2006), no. 8, 2303–2323.
[17] S.T. Mndawe, B.S. Paul and W. Doorsamy, Development of a stock price prediction framework for intelligent media and technical analysis, Appl. Sci. 12 (2022), no. 2.
[18] R. Naranjo and M. Santos, A fuzzy decision system for money investment in stock markets based on fuzzy candlesticks pattern recognition, Expert Syst. Appl. 133 (2019), 34–48.
[19] K. Ostaszewski, P. Heinisch, I. Richter, H. Kroll, W. Balke, D. Fraga and K. Glassmeier, Pattern recognition in time series for space missions: A rosetta magnetic field case study, Acta Astron. 168 (2020), 123–129.
[20] M. Paluch and L. Jackowska-Strumi l lo, Decision System For Stock Data Forecasting Based on Hopfield Artificial neural network, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska., 2016. ´
[21] S. Rath, P. Samal and J. Behera, Fundamental and technical analysis in future trading, Biotica Res. Toda. 2 (202), no. 4, 60–63.
[22] T.J. Strader, J.J. Rozycki, T.H. Root and Y.H.J. Huang, Machine learning stock market prediction studies: Review and research directions, J. Int. Technol. Inf. Manag. 28 (2020), no. 4, 63–83.
[23] I. Swietlicka, W. Kuniszyk-J´o´zkowiak and M. Swietlicki, A ´ rtificial neural networks combined with the principal component analysis for non-fluent speech recognition, Sensors 22 (2022), no. 1.
[24] E. Volna, M. Kotyrba and R. Jarusek, Multi-classifier based on Elliott wave’s recognition, Comput. Math. Appl. 66 (2013), 213–225.
[25] E. Voln´a, M. Kotyrba, Z. Oplatkov´a and R. Senkerik, Elliott waves classification by means of neural and pseudo neural networks, Soft Comput. 22 (2018), no. 6, 1803–1813.
[26] J.L. Wu, L.C. Yu and P.C. Chang, An intelligent stock trading system using comprehensive features, Appl. Soft Comput. 23 (2014), 39–50.
[27] M. Zhu, S. Atri and E. Yegen, Are candlestick trading strategies effective in certain stocks with distinct features?, Pacific-Basin Finance J. 37 (2016), 116–127.
[28] F. Zulkernine, M.M. Kumbure, C. Lohrmann, P. Luukka and J. Porras, Machine learning techniques and data for stock market forecasting: a literature review, Expert Syst. Appl. 197 (2022), no. 1, 116659.
[29] A. Frost and R. Prechter, Elliott Wave Principle: Key to Market Behavior, John Wiley & Sons, 2001.
[30] P. Dost´al and Z. Sojka, Elliottovy vlny, Tribuns.r.o, 2008.
[31] T. Kohonen, Self-Organizing Maps, Berlin, Germany, Springer Series in Information Sciences, 2001.
[32] L. Yang, S. Liu, S. Tsoka and L.G. Papageorgiou, Mathematical programming for piecewise linear regression analysis, Expert Syst. Appl. 44 (2016), 156–167.