[1] R.P. Agarwal, F. Mofarreh, R. Shah, W. Luangboon and K. Nonlaopon, An analytical technique based on natural
transform to solve fractional-order parabolic equations, Entropy 23 (2021), 1086.
[2] H. Ahmad, A.R. Seadawy and T.A. Khan, Study on numerical solution of dispersive water wave phenomena by
using a reliable modification of variational iteration algorithm, Math. Comput. Simul. 177 (2020), 13–23
[3] L. Akinyemi, M. S¸enol and S.N. Huseen, Modified homotopy methods for generalized fractional perturbed ZakharovKuznetsov equation in dusty plasma, Adv. Differ. Equ. 2021 (2021), no. 1, 1–27.
[4] F.T. Akyildiz, D.A. Siginer, K. Vajravelu and R.A.V. Gorder, Analytical and numerical results for the SwiftHohenberg equation, Appl. Math. Comput. 216 (2010), 221-226.
[5] H.A. Aljahdaly, R.P. Agarwal, R. Shah and T. Botmart, Analysis of the time fractional-order coupled Burgers
equations with non-singular kernel operators, Math. 9 (2021), 2326.
[6] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and
application to heat transfer model, Therm. Sci. 20 (2016), no. 2, 763-769.
[7] N. Attia, A. Akg¨ul and A. Nour, Numerical Solutions to the Time-Fractional Swift-Hohenberg Equation Using
Reproducing Kernel Hilbert Space Method, Int. J. Appl. Comput. Math. 7 (2021), 194.
[8] O. Bazighifan, H. Ahmad and S-W. Yao, New oscillation criteria for advanced differential equations of fourth
order, Math. 8 (2020), 728.
[9] F.B.M. Belgacem and R. Silambarasan, Theory of natural transform, Math. Eng. Sci. Aerosp. 3 (2012), no. 1,
105–135.
[10] A. Bokhari, D. Baleanu and R. Belgacem, Application of Shehu transform to Atangana-Baleanu derivatives, Int.
J. Math. Comput. Sci. 20 (2019), 101–107.
[11] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int. 13 (1967),
529–539.
[12] M. Caputo and M. Fabricio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ.
Appl. 1 (2015), no. 2, 73–85.
[13] M. Cross and P. Hohenberg, Pattern formation outside of equilibrium, Rev. Modern Phys. 65 (1993), 851–862.
[14] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010.
[15] U. Farooq, Khan, F. Tchier F, E. Hinca, D. Baleanu, H.B. Jebreen, New approximate analytical technique for the
solution of time fractional fluid flow models, Adv. Differ. Equ. 2021 (2021), no. 1, 1–20.
[16] A. Fernandez and D. Baleanu, Classes of operators in fractional calculus: A case study, Math. Meth. Appl. Sci.
44 (2021), no. 11, 9143–9162.
[17] B. Ghanbari and S. Djilali, Mathematical analysis of a fractional-order predator-prey model with prey social
behavior and infection developed in predator population, Chaos Solitons Fractals 138 (2020), 109960.
[18] A. Goswami, S. Rathore, J. Singh and D. Kumar, Analytical study of fractional nonlinear schrodinger equation
with harmonic oscillator, Discrete Continuous Dyn. Syst. Ser. S 14 (2021), 3589–3610.[19] A. Goswami, Sushila, J. Singh and D. Kumar, Numerical computation of fractional Kersten-Krasil’shchik coupled
KdV-mKdV system occurring in multi-component plasmas, AIMS Math. 5 (2020), 2346–2368.
[20] M.H. Heydari and M. Hosseininia, A new variable-order fractional derivative with non-singular Mittag–Leffler
kernel: application to variable-order fractional version of the 2D Richard equation, Engin. Comput. 38 (2022),
1759—1770.
[21] P.C. Hohenberg and J.B. Swift, Effects of additive noise at the onset of Rayleigh-Benard convection, Phys. Rev.
A 46 (1992), 4773–4785.
[22] S.N. Huseen, On analytical solution of time-fractional type model of the Fisher’s equation, Iraqi J. Sci. 61 (2020),
1419–1425.
[23] M. Inc, M.N. Kha, Ahmad, S.-W. Yao, H. Ahmad and P. Thounthong, Analysing time-fractional exotic options
via efficient local meshless method, Res. Phys. 19 (2020), 103385.
[24] H. Jassim and M. Mohammed, Natural homotopy perturbation method for solving nonlinear fractional gas dynamics equations, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 812–820.
[25] B. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order
parabolic equations, SIAM J. Numer. Anal. 51 (2013), 445–466.
[26] X. Ji and H. Tang, High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and twodimensional fractional diffusion equations, Numer. Math. Theory Meth. Appl. 5 (2012), no. 3, 333–358.
[27] N.A. Khan, N.U. Khan, M. Ayaz and A. Mahmood, Analytical methods for solving the time-fractional
Swift–Hohenberg (S–H) equation, Comput. Math. Appl. 61 (2011), 2182-2185.
[28] A. Khalouta and A. Kadem, Fractional natural decomposition method for solving a certain class of nonlinear
time-fractional wave-like equations with variable coefficients, Acta Univ. Sapientiae Math. 11 (2019), 99–116.
[29] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations,
Elsevier, Amsterdam, 2006.
[30] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A
Wiley-Interscience Publication, John Wiley and Sons, Inc., New York, 1993.
[31] L. Lega, J.V. Moloney and A.C. Newell, Swift-hohenberg equation for lasers, Phys. Rev. Lett. 73 (1994), 2978–
2981.
[32] S. Maitama, A hybrid natural transform homotopy perturbation method for solving fractional partial differential
equations, Int. J. Differ. Equ. 2016 (2016) 9207869.
[33] M. Merdan, A numeric-analytic method for time-fractional Swift-Hohenberg (S-H) equation with modified
Riemann-Liouville derivative, Appl. Math. Model. 37 (2013), 4224–4231.
[34] L. Noeiaghdam, S. Noeiaghdam and D. Sidorov, Dynamical control on the homotopy analysis method for solving
nonlinear shallow water wave equation, J. Phys. Conf. Ser. 1847 (2021), 012010.
[35] N.I. Okposo, M.O. Adewole, E.N. Okposo, H.I. Ojarikre and F.A. Abdullah, A mathematical study on a fractional
COVID-19 transmission model within the framework of nonsingular and nonlocal kernel, Chaos Solitons Fractals
152 (2021), 111427.
[36] N.I. Okposo, A.J. Jonathan, E.N. Okposo and M. Ossaiugbo, Existence of solutions and stability analysis for a
fractional helminth transmission model within the framework of Mittag-Leffler kernel, Nigerian J. Sci. Envir. 19
(2021), 67–80.
[37] N.I. Okposo, P. Veeresha and E.N. Okposo, Solutions for time-fractional coupled nonlinear Schr¨odinger equations
arising in optical solitons, Chinese J. Phys. 77 (2022), 965–984
[38] L.A. Peletier and V. Rottsch¨afer, Large time behaviour of solutions of the swift-hohenberg equation, R. Acad. Sci.
Paris Ser I 336 (2003), 225–30.
[39] Y. Pomeau and S. Zaleski, Dislocation motion in cellular structures, Phys. Rev. A 27 (1983), 2710–2726.
[40] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.[41] D.G. Prakasha, P. Veeresha and H.M. Baskonus, Residual power series method for fractional Swift–Hohenberg
equation, Fractal and Fractional. 3 (2019), 9.
[42] S. Rashid, R. Ashraf and F.S. Bayones, A novel treatment of fuzzy fractional Swift-Hohenberg equation for a
hybrid transform within the fractional derivative operator, Fractal Fract. 5 (2021), 209.
[43] N. Rashid, A. Nasir, Z. Laiq, S.N. Kottakkkaran, M.R. Alharthi and J. Wasim, Extension of natural transform
method with Daftardar-Jafari polynomials for fractional order differential equations, Alexandria Engin. J. 60
(2021), 3205–3217.
[44] P.N. Ryabov and N.A. Kudryashov. Nonlinear waves described by the generalized swift-hohenberg equation, J.
Phys. Conf. Ser. 788 (2017), 012032.
[45] T.D. Seyma, H. Bulut and F.B.M. Belgacem. Sumudu transform method for analytical solutions of fractional type
ordinary differential equations, Math. Prob. Engin. 2015 (2015), Article ID 131690.
[46] S.R. Moosavi Noori and N. Taghizadeh, Study of convergence of reduced differential transform method for different
classes of differential equations, Int. J. Differ. Equ. 2021 (2021), Article ID 6696414.
[47] K. Shah, H. Khalil and R. A. Khan, Analytical solutions of fractional order diffusion equations by natural
transform method, Iran. J. Sci. Technol. Trans. A Sci. 42 (2018), no. 3, 1479–1490.
[48] J. Singh, D. Kumar and S. Kumar, An efficient computational method for local fractional transport equation
occurring in fractal porous media, Comput. Appl. Math. 39 (2020).
[49] S. Soradi-Zeid, M. Mesrizadeh and C. Cattani, Numerical solutions of fractional differential equations by using
Laplace transformation method and quadrature rule Fractal Fract. 5 (2021), 111.
[50] J. B. Swift and P. C. Hohenberg, Hydrodynamics fluctuations at the convective instability, Phys. Rev. A. 15
(1977), 319–328.
[51] P. Veeresha, D. G. Prakasha and D. Baleanu, Analysis of fractional Swift-Hohenberg equation using a novel
computational technique, Math. Meth. Appl. Sci. 43 (2019), 1970–1987.
[52] P. Veeresha, D. G. Prakasha and S. Kumar, A fractional model for propagation of classical optical solitons by
using nonsingular derivative, Math. Methods Appl. Sci. (2020), 1–15, https://doi.org/10.1002/mma.6335
[53] K. Vishal, S. Das, S.H. Ong and P. Ghosh, On the solutions of fractional Swift-Hohenberg equation with dispersion,
Appl. Math. Comput. 219 (2013), 5792–5801.
[54] K. Vishal, S. Kumar and S. Das, Application of homotopy analysis method for fractional Swift-Hohenberg equation
- Revisited, Appl. Math. Model, 36 (2012), 3630-3637.
[55] A.-M. Wazwaz, Partial Differential Equations And Solitary Waves Theory, Springer Science and Business Media:
Berlin/Heidelberg, Germany, 2010
[56] J. Xu, H. Khan, R. Shah, A.A. Alderremy, S. Aly and D. Baleanu, The analytical analysis of nonlinear fractionalorder dynamical models, AIMS Math. 6 (2021), 6201–6219.